Bigfoot

From BusyBeaverWiki
Revision as of 19:45, 7 October 2025 by RobinCodes (talk | contribs) (Analysis: Attempted fix for "math input error" for this page)
Jump to navigation Jump to search
Unsolved problem:
Does Bigfoot run forever?

Bigfoot (1RB2RA1LC_2LC1RB2RB_---2LA1LA (bbch)) is a BB(3,3) Cryptid. Its low-level behaviour was first shared over Discord by savask on 14 Oct 2023, and within two days, Shawn Ligocki described the high-level rules shown below, whose attributes inspired the Turing machine's name.[1]

0 1 2
A 1RB 2RA 1LC
B 2LC 1RB 2RB
C --- 2LA 1LA
The transition table of Bigfoot.

In May of 2024, Iijil compiled Bigfoot into a 7-state 2-symbol machine 0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB (bbch).

Analysis

Let A(a,b,c):=012a12b<A12c0. Then, A(a,6b,c)4a+(2b+1)48b+(12b+1)2c+13A(a,8b+c1,2),A(a,6b+1,c)4a+(6b+5)16b+(4b+1)6c+29A(a+1,8b+c1,3),A(0,6b+2,c)(b+1)96b+(3b+1)8c+180<C116b+2c+520,A(a,6b+2,c)4a+(2b+3)48b+(12b+7)2c+51A(a1,8b+c+3,2) if a1,A(a,6b+3,c)4a+(6b+7)16b+(12b+5)2c+91A(a,8b+c+1,5),A(a,6b+4,c)4a+(2b+3)48b+(12b+7)2c+63A(a+1,8b+c+3,2),A(a,6b+5,c)4a+(6b+11)16b+(4b+3)6c+103A(a,8b+c+5,3).

Proof

For now, we will work with the slightly different configuration A(a,b,c):=012a1b<A1c0. Consider the partial configuration P(m,n):=1m<A1n0. We first require the following shift rule: A>1ss2sA> Using this shift rule, we get 1m12n+1A>0 after n+1 steps, followed by 1m12n<C1220 four steps later. Observing that 22<C becomes <C11 in two steps leads to another shift rule: 22s<C2s<C12s From here, there are two different scenarios depending on if n is even or odd, given below as histories of transitions that use the aforementioned shift rules:

  1. If n0 (mod2), then what follows is:1m12n<C1220n1m1<C1n+122041m3<A1n+3220n+41m42n+4A>22011m42n+4<C120n+41m4<C1n+52041m6<A1n+720n+81m72n+8A>2011m72n+8<C10n+81m7<C1n+9041m9<A1n+110Therefore, we haveP(m,n)6n+43P(m9,n+11) if m9 and n0 (mod2).
  2. If n1 (mod2), then what follows is:1m12n<C1220n11m12<C1n22011m1<A1n+1220n+21m22n+2A>22011m22n+2<C120n+11m22<C1n+22011m2<A1n+320n+41m32n+4A>2011m32n+4<C10n+31m32<C1n+4011m3<A1n+50Therefore, we have

P(m,n)6n+19P(m3,n+5) if m3 and n1 (mod2). From this we know that Bigfoot's behaviour depends on the value of b modulo 12, and with A(a,b,c) we have P(b,c). The following shift rules will be useful: 12s<A2s<A21sB>1ss1sB>B>2ss2sB> Only even values of b and c are relevant, so there remain six possible scenarios:

  1. If b0 (mod12), then in i=0b/121(6(16i+c)+43+6(16i+11+c)+19)=i=0b/1214(48i+3c+32)=23b2+83b+bc steps we arrive at P(0,16×b12+c), or 012a<A14b/3+c0 when considering the complete configuration. What follows is:012a<A14b/3+c02a0<A21a14b/3+c0101B>21a14b/3+c02a+4b/3+c012a14b/3+c+1B>012012a14b/3+c2<A140This means that if 43b+c2, then we will reach A(a,43b+c2,4) in 4a+23b2+4b+bc+c+13 steps.
  2. If b2 (mod12), then in i=0(b2)/1214(48i+3c+32)=23b2+bc2c83 steps we arrive at P(2,4(b2)3+c), or 012a11<A1(4b2)/3+c0. What follows is:012a11<A14(b2)/3+c04(b2)/3+c+1012a124(b2)/3+c+1A>04012a124(b2)/3+c<C12204(b2)/3+c012a1<C14(b2)/3+c+12201012a<A214(b2)/3+c+12202a0<A21a214(b2)/3+c+1220101B>21a214(b2)/3+c+12204(b2)/3+2a+c+4012a+114(b2)/3+c+122B>018012a+114(b2)/3+c2<A160This means that if 4(b2)3+c2, then we will reach A(a+1,4b143+c,6) in 4a+23b2+4b+bc+c+553 steps.
  3. If b4 (mod12), then in 23b283b+bc4c steps we arrive at P(4,4(b4)3+c), or 012a1111<A14(b4)/3+c0. What follows is:012a1111<A14(b4)/3+c0(8b14)/3+2c012a11<A214(b4)/3+c+12203012a1<A14(b4)/3+c+32204(b4)/3+c+4012a24(b4)/3+c+4A>2201012a24(b4)/3+c+4<C1204(b4)/3+c+4012a<C14(b4)/3+c+5201012a11<A14(b4)/3+c+6204(b4)/3+c+7012a124(b4)/3+c+7A>201012a124(b4)/3+c+7<C104(b4)/3+c+6012a12<C14(b4)/3+c+701012a1<A14(b4)/3+c+802(a1)0<A21a114(b4)/3+c+80101B>21a114(b4)/3+c+802a+4(b4)/3+c+6012a114(b4)/3+c+9B>012012a114(b4)/3+c+6<A140This means that if a=0, then Bigfoot will reach the undefined C0 transition with the configuration 0<C1(4b1)/3+c20 in 23b2+83b+bc103 steps. Otherwise, it will proceed to reach A(a1,4b+23+c,4) in 4a+23b2+203b+bc+3c+413 steps.
  4. If b6 (mod12), then in 23b2163b+bc6c+8 steps we arrive at P(6,4(b6)3+c), or 012a111111<A14(b6)/3+c0. What follows is:012a111111<A14(b6)/3+c016b/3+4c14012a11<C14(b6)/3+c+5204012a<A14(b6)/3+c+7202a0<A21a14(b6)/3+c+720101B>21a14(b6)/3+c+7202a+4(b6)/3+c+8012a14(b6)/3+c+82B>060012a14(b6)/3+c+2<A1100This means that we will reach A(a,43b+c6,10) in 4a+23b2+43b+bcc+59 steps.
  5. If b8 (mod12), then in 23b28b+bc8c+643 steps we arrive at P(8,4(b8)3+c), or 012a18<A14(b8)/3+c0. What follows is:012a18<A14(b8)/3+c0(16b62)/3+4c012a11<A14(b8)/3+c+7204(b8)/3+c+8012a124(b8)/3+c+8A>201012a124(b8)/3+c+8<C104(b8)/3+c+8012a1<C14(b8)/3+c+901012a<A214(b8)/3+c+902a0<A21a214(b8)/3+c+90101B>21a214(b8)/3+c+902a+4(b8)/3+c+10012a+114(b8)/3+c+9B>012012a+114(b8)/3+c+6<A140This means that we will reach A(a+1,4b143+c,4) in 4a+23b2+43b+bcc+293 steps.
  6. If b10 (mod12), then in 23b2323b+bc10c+40 steps we arrive at P(10,4(b10)3+c), or 012a110<A14(b10)/3+c0. What follows is:012a110<A14(b10)/3+c08b+6c37012a1<A14(b10)/3+c+1104(b10)/3+c+12012a24(b10)/3+c+12A>04012a24(b10)/3+c+11<C12204(b10)/3+c+10012a2<C14(b10)/3+c+112201012a<A14(b10)/3+c+122202a0<A12a14(b10)/3+c+12220101B>12a14(b10)/3+c+122202a+4(b10)/3+c+14012a14(b10)/3+c+1322B>018012a14(b10)/3+c+10<A160This means that we will reach A(a,4b103+c,6) in 4a+23b2+43b+bcc+23 steps.

The information above can be summarized as A(a,b,c){A(a,43b+c2,4)if b0(mod12) and 43b+c2,A(a+1,4b143+c,6)if b2(mod12) and 4(b2)3+c2,0<C1(4b1)/3+c20if b4(mod12) and a=0,A(a1,4b+23+c,4)if b4(mod12) and a>0,A(a,43b+c6,10)if b6(mod12),A(a+1,4b143+c,4)if b8(mod12),A(a,4b103+c,6)if b10(mod12). Using the definitions of A and A to transform these rules produces this: A(a,b,c){A(a,43b+c1,2)if b0(mod6) and 43b+c1,A(a+1,4b73+c,3)if b1(mod6) and 4(b1)3+c1,0<C1(8b1)/3+2c20if b2(mod6) and a=0,A(a1,4b+13+c,2)if b2(mod6) and a>0,A(a,43b+c3,5)if b3(mod6),A(a+1,4b73+c,2)if b4(mod6),A(a,4b53+c,3)if b5(mod6). Substituting b6b+k where k is the remainder for each case yields the final result.

Using the floor function, it is possible to describe the behaviour of b and c using a function that is not defined piecewise: f(m,n)=(4m34(δ1(m)δ2(m)+δ4(m))2(3δ3(m)+δ5(m))3+n,2+δ1(m)+3δ3(m)+δ5(m)),δi(m)=mi6mi16={1if mi(mod6),0otherwise. In effect, the halting problem for Bigfoot is about whether through enough iterations of f(m,n) we encounter more m values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6.

An important insight is that if b is odd and c=2, then after four iterations of A, that will remain the case. This allows one to define a configuration that eliminates the c parameter and whose rules use a modulus of 81.[1]

Trajectory

After 69 steps, Bigfoot will reach the configuration A(2,1,2) before the Collatz-like rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have a=3999888. Here are the first few: A(2,1,2)49A(3,1,3)59A(4,2,3)109A(3,6,2)221A(3,9,2)379A(3,11,5)597A(3,18,3) There exists a heuristic argument for Bigfoot being probviously non-halting. By only considering the rules for which a changes, one may notice that the trajectory of a values can be approximated by a random walk in which at each step, the walker moves +1 with probability 23 or moves -1 with probability 13, starting at position 2. If P(n) is the probability that the walker will reach position -1 from position n, then P(n)=13P(n1)+23P(n+1). Solutions to this recurrence relation come in the form P(n)=c02n+c1, which after applying the appropriate boundary conditions reduces to P(n)=2(n+1). As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be 239998892.697×101204087.

References

  1. 1.0 1.1 S. Ligocki, "BB(3, 3) is Hard (Bigfoot) (2024). Accessed 22 July 2024.