User contributions for Sligocki

Jump to navigation Jump to search
Search for contributionsExpandCollapse
⧼contribs-top⧽
⧼contribs-date⧽
(newest | oldest) View ( | ) (20 | 50 | 100 | 250 | 500)

13 May 2025

  • 20:0920:09, 13 May 2025 diff hist +2,236 N 1RB0RA 1LC1LF 1RD0LB 1RA1LE 1RZ0LC 1RG1LD 0RG0RFCreated page with "{{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} {{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} is a halting BB(7) TM which runs for over <math>2 \uparrow^{12} 2 \uparrow^{12} 3</math> steps. == Analysis by Shawn Ligocki == Consider general configurations matching the regex: <math>0^\infty \; 11 \; (1 \; (01)^*)^* \; 0011100 \; \text{A>} \; 0^\infty</math> === Low level rules === <pre> 01 1 01^n 0011100 A> 00 -->..."

9 May 2025

  • 02:4002:40, 9 May 2025 diff hist +1,058 N 1RB1RA 1RC0LC 0LD1LG 1LF0LE 1RZ1LF 0LA1LD 1RA1LCCreated page with "{{machine|1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC}} {{TM|1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC}} is a halting tetrational BB(7) TM that runs for over 10↑↑35 steps found by Shawn Ligocki on 8 May 2025 based on @mxdys's enumeration system https://github.com/ccz181078/TM Analysis by Shawn Ligocki: <pre> 1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC B(a,b,c,d) = 0^inf 1^a B> 1^b 01^c 011^d 0^inf D(a) = B(a,0,0,0) = 0^inf 1^a B> 0^inf D(3k) -..."

2 May 2025

29 April 2025

28 April 2025

24 April 2025

21 April 2025

17 April 2025

16 April 2025

15 April 2025

14 April 2025

12 April 2025

10 April 2025

8 April 2025

30 March 2025

29 March 2025

28 March 2025

25 March 2025

22 March 2025

13 March 2025

12 March 2025

10 March 2025

8 March 2025

7 March 2025

(newest | oldest) View ( | ) (20 | 50 | 100 | 250 | 500)