Beaver Math Olympiad: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(add BMO for 1RB0LD_1LC0RA_1RA1LB_1LA1LE_1RF0LC_---0RE)
Line 24: Line 24:
# If <math>a_0=3</math>, does there exist a non-negative integer <math>k</math> such that the list of numbers <math>a_0, a_1, a_2, \dots, a_k</math> have more than twice as many even numbers as odd numbers? ([[Hydra]])
# If <math>a_0=3</math>, does there exist a non-negative integer <math>k</math> such that the list of numbers <math>a_0, a_1, a_2, \dots, a_k</math> have more than twice as many even numbers as odd numbers? ([[Hydra]])
# If <math>a_0=8</math>, does there exist a non-negative integer <math>k</math> such that the list of numbers <math>a_0, a_1, a_2, \dots, a_k</math> have more than twice as many odd numbers as even numbers? ([[Antihydra]])
# If <math>a_0=8</math>, does there exist a non-negative integer <math>k</math> such that the list of numbers <math>a_0, a_1, a_2, \dots, a_k</math> have more than twice as many odd numbers as even numbers? ([[Antihydra]])
=== {{TM|1RB0LD_1LC0RA_1RA1LB_1LA1LE_1RF0LC_---0RE|undecided}} ===
Let <math>(a_n)_{n \ge 1}</math> and <math>(b_n)_{n \ge 1}</math> be two sequences such that <math>(a_1, b_1) = (0, 5)</math> and
<math display="block">(a_{n+1}, b_{n+1}) = \begin{cases}
(a_n+1, b_n-f(a_n)) & \text{if } b_n \ge f(a_n) \\
(a_n, 3b_n+a_n+5) & \text{if } b_n < f(a_n)
\end{cases}</math>
where <math>f(x)=10\cdot 2^x-1</math>
for all positive integers <math>n</math>. Does there exist a positive integer <math>i</math> such that <math>b_i = f(a_i)-1</math>?


== Solved problems ==
== Solved problems ==

Revision as of 11:26, 17 August 2024

Beaver Mathematical Olympiad (BMO) is an attempt to re-formulate the halting problem for some particular Turing machines as a mathematical problem in a style suitable for a hypothetical math olympiad.

The purpose of the BMO is twofold. First, statements where every non-essential details (e.g. related to tape encoding, number of steps, etc) are discarded are more suitable to be shared with mathematicians who perhaps are able to help. Second, it's a way to jokingly highlight how a hard question could appear deceptively simple.

Unsolved problems

1RB1RE_1LC0RA_0RD1LB_---1RC_1LF1RE_0LB0LE (bbch)

Let and be two sequences such that and

for all positive integers . Does there exist a positive integer such that ?

The first 10 values of are .

Hydra and Antihydra

Let be a sequence such that for all non-negative integers .

  1. If , does there exist a non-negative integer such that the list of numbers have more than twice as many even numbers as odd numbers? (Hydra)
  2. If , does there exist a non-negative integer such that the list of numbers have more than twice as many odd numbers as even numbers? (Antihydra)

1RB0LD_1LC0RA_1RA1LB_1LA1LE_1RF0LC_---0RE (bbch)

Let and be two sequences such that and

where

for all positive integers . Does there exist a positive integer such that ?

Solved problems

1RB0RB3LA4LA2RA_2LB3RA---3RA4RB (bbch) and 1RB1RB3LA4LA2RA_2LB3RA---3RA4RB (bbch)

Let be the largest integer such that divides . Let be a sequence such that

for all non-negative integers . Is there an integer such that for some positive integer ?

Link to Discord discussion: https://discord.com/channels/960643023006490684/1084047886494470185/1252634913220591728

1RB3RB---1LB0LA_2LA4RA3LA4RB1LB (bbch)

Bonnie the beaver was bored, so she tried to construct a sequence of integers . She first defined , then defined depending on and using the following rules:

  • If , then .
  • If , then .

With these two rules alone, Bonnie calculates the first few terms in the sequence: . At this point, Bonnie plans to continue writing terms until a term becomes . If Bonnie sticks to her plan, will she ever finish?

Solution

How to guess the closed-form solution: Firstly, notice that . Secondly, calculate the error term . The error term appears to have a period of 4. This leads to the following guess:

This closed-form solution can be proven correct by induction. Unfortunately, the induction may require a lot of tedious calculations.

For all , we have and . Therefore, Bonnie will never finish.