Green's machines

From BusyBeaverWiki
Jump to navigation Jump to search

In 1964, Milton W. Green hand-crafted a family of fast-growing Turing Machines with n-states, 2-symbols for all n4.[1] This family grows roughly as fast as the Ackermann function:BB2n3n23

Over the years, these Turing Machines lost champion status. The last machines to lose champion status were BB(9), BB(10), and BB(11). In August 2024, Racheline discovered the better bounds BB(9)>101820 and BB(10)>104.

Machines

# States TM Sigma Score
4 1LB1RZ_0LC1LC_0LD0LC_1RD1RA (bbch) 7
5 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1RE1RC (bbch) 13
6 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1RF1RD (bbch) 35
7 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1RG1RE (bbch) 22,961
8 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1RH1RF (bbch) 739332
9 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1RI1RG (bbch) >331
10 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1RJ1RH (bbch) >334
11 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1RK1RI (bbch) >332
12 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1LK1RH_0LL0LK_1RL1RJ (bbch) >334
13 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1LL1RI_0LM0LL_1RM1RK (bbch) >332
14 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1LK1RH_0LL0LK_1LM1RJ_0LN0LM_1RN1RL (bbch) >334
15 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1LL1RI_0LM0LL_1LN1RK_0LO0LN_1RO1RM (bbch) >332

External Links

References

  1. Milton W. Green. “A Lower Bound on Rado’s Sigma Function for Binary Turing Machines”, Proceedings of the IEEE Fifth Annual Symposium on Switching Circuits Theory and Logical Design, 1964, pages 91–94, https://doi.org/10.1109/SWCT.1964.3