1RB1RF_0RC0RD_1LC1LD_1LE0RB_0RA1LG_1LC1RA_---0RF
Jump to navigation
Jump to search
1RB1RF_0RC0RD_1LC1LD_1LE0RB_0RA1LG_1LC1RA_---0RF
(bbch) is a non-halting BB(7) TM with an infinite tetrational rule.
Analysis by Shawn Ligocki
Low level rules:
11 00^n C> 0^2 --> 00^n+2 C> 1101 00^n C> 0^3 --> 0 11^n+1 00^2 C> 0010 00^n C> 0^8 --> 01 11^n+1 0^3 1 00^2 C> 001 00^n C> 0^3 --> 01 11^n 00^2 C> 110 00^n C> 0^5 --> 0^2n+3 1 00^2 C> 0101 00^n C> 0 --> 1 Z> 1^2n+4
Higher level rules:
C(a, b, c, d) = 0^inf 1^d 0^c 1^b 00^a C> 0^inf C(a, b+2, ...) -> C(a+2, b, ...) C(a, 2b+r, ...) -> C(a+2b, r, ...) C(a, b, c, 0) = C(a, b, inf) C(a, 0, 2c+r, ...) = C(a+c, 0, r, ...) C(a, 0, 0, d) = C(a, d, inf) C(a, 0, 1, 1) -> C(2, 1, 3, 2a+3) -> C(14, 1, 1, 2a+3) C(a, 0, 1, d+2) -> C(2, 1, 2a+3, d) -> C(2^{2a+4} - 2, 1, 1, d) C(a, 1, c+2, ...) -> C(2, 2a+1, c+1, ...) -> C(2a+2, 1, c+1, ...) C(a, 1, c+1, ...) -> C((a+2) 2^c - 2, 1, 1, ...) C(a, 1, 1, d+2) -> C(2, 2a+2, 1, d) -> C(2a+4, 0, 1, d) C(a, 1, 1, d+4) -> C(2^{4a+12} - 2, 1, 1, d) C(a, 1, 1, 3) -> C(2a+4, 0, 1, 1) -> C(14, 1, 1, 4a+11) C(a, 1, 1, 1) -> Halt(2a+5) g_2(n) = 2^{4n+12} - 2 C(a, 1, 1, 4k+r) -> C(g_2^k(a), 1, 1, r) C(14, 1, 1, 4k+3) -> C(14, 1, 1, 4 g_2^k(a) + 11)
Note: the last rule is infinite since 4 g_2^k(a) + 11
is of the form 4k+3
. The TM enters this config at step 334: C(14, 1, 1, 3)