User:Polygon/Page for testing
Jump to navigation
Jump to search
1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA
(bbch) is the current BB(2,6) champion. It was discovered on the 19th of May 2023 by Pavel Kropitz. It halts with a score > .
Analysis by Shawn Ligocki
https://www.sligocki.com/2023/05/20/bb-2-6-p3.html
Analysis Level 1 These rules can all be verified by direct simulation: 00 <A 212 22^n 55 → <A 212 22^n+2 00 <A 212 22^n 2 55 → <A 212 55^n+2 2 0^5 <A 212 22^n 52 5555 → <A 212 55 2 55^n+3 52 00 <A 212 22^n 2 52 5 → <A 212 55^n+2 52 Level 2 Repeating the first rule above we get: 0^∞ <A 212 22^n 55^k → 0^∞ 212 22^n+2k which let's us prove Rule 2: 0^∞ <A 212 22^n 2 55 → 0^∞ <A 212 55^n+2 2 → 0^∞ <A 212 22^2n+4 2 Level 3 Repeating Rule 2 we get: 0^∞ <A 212 22^n 2 55^k → 0^∞ <A 212 22^(n+4)*((2^k)-4) 2 which let's us prove Rule 3: 0^∞ <A 212 22^n 52 5^5 → 0^∞ <A 212 55 2 55^n+3 52 5 → 0^∞ <A 212 22^2 2 55^n+3 52 5 → 0^∞ <A 212 22^(6*2^(n+3)-2) 52 5 → 0^∞ <A 212 55^(6*2^(n+3)-2) 52 → 0^∞ <A 212 22^(6*2^(n+4)-4) 52 Level 4 Let f(n) = 6*2^(n+4)-4 Repeating Rule 3 we get the Tetration Rule: 0^∞ <A 212 22^n 52 5^5k → 0^∞ <A 212 22^f^k(n) 52 This rule will be the main contributor to the score since f^k(n) > 2^^k. In fact, this rule will apply 3 times, which is how we end up with 3 tetrations in the final score (>10^^10^^10^^3).
∞∞∞∞ →→→→