User:Polygon/Page for testing

From BusyBeaverWiki
Revision as of 15:34, 5 October 2025 by Polygon (talk | contribs) (Placeholder: Fixed link to bbch)
Jump to navigation Jump to search

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD (bbch) is a pentational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over 245, making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score.

Pavel listed the halting tape as:

1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19))

Analysis by Polygon

S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S A> 0^2 S --> S <A 1^2 S [+5 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
   S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]

7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps]

9. S D> 0^2 S --> S <B 2^2 S [+3 steps]

10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps]
11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps]

12. S  1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps]
13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps]

14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps]
15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps]

16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps]
17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf
18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf

19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf

20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf

21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf

22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf

23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf

Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf

Let f1(n)=2n+4×35

Let f2(a,b)=f12×f2(a1,b)+11(1), wheref2(0,b)=b

Rule 21 becomes:

  • D(a,b,c) --> D(a,b1,2b+4×35)
  • D1(a,b,c) --> D1(a,b1,2b+4×35)

Rule 23 becomes:

  • D(a, 0, c) --> D(a-3, 2c+11, 1)
  • D_1(a, 0, c) --> D_1(a-3, 2c+11, 1)

Rule 24 becomes:

  • D(0, 0, c) --> D(c+1, 3, 1)

Rule 25 becomes:

  • D(2, 0, c) --> D(2c+8, 3, 1)

Rule 26 becomes:

  • D_1(1, 0, c) --> D_1(2c+7, 3, 1)

Rule 27 becomes:

  • D_1(0, 0, c) --> D(2c+5, 3, 1)

Rule 28 becomes:

  • D(1, 0, c) --> halt with score 4c + 18

By repeating rule 21, a stronger rule can be constructed:

  • D(a,b,c) --> D(a,0,f1b(c))
  • D1(a,b,c) --> D1(a,0,f1b(c))

If a is greater than or equal to 3: D(a,0,c) --> D(a3,2c+11,1) --> D(a3,0,f12c+11(1)) =D(a3,0,f2(1,c))

  • D(a,0,c) --> D(a3,0,f12c+11(1))

This rule can also be repeated, also note that f12c+11(1)=f2(1,c) and f12×f2(a,b)+11(1)=f2(a+1,b):

  • D(3k+d,0,c) --> D(d,0,f2(k,c))
  • D1(3k+d,0,c) --> D1(d,0,f2(k,c))

The TM starts in configuration D(2, 2, 1).

D(2, 2, 1) -->

D(2,0,f12(1))=D(2,0,f1(91))

e1=f1(91)=295×35

f_1(n) = 2^(n+4)*3 - 5
Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1.
Next, 3k+1 mod 3 = 1
So f_1(n) mod 3 = 1
Thus f_1^a(n) mod 3 = 1
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1)
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n)
Thus f_2(a,b) mod 3 = 1

D(2,0,e1)

-->D1(2e1+8,3,1) --> D1(2e1+8,0,f12(91))

e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1

D1(2e1+8,0,f12(91))

--> D1(1,0,f2(2e1+73,f12(91)))

e2=f2(2e1+73,f12(91))

D1(1,0,e3)

e2mod3=1

--> D1(2e2+7,3,1) --> D1(2e2+7,0,f12(91))

2e_3 + 7

Modulus: 2 + 7 --> 9 mod 3 = 0

--> D1(0,0,f2(2e2+73,f12(91)))

e3=f2(2e2+73,f12(91))


D1(0,0,e3)

--> D(2e3+5,3,1) --> D(2e3+5,0,f12(91))

e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1

--> D(1,0,f2(2e3+43,f12(91)))

e4=f2(2e3+43,f12(91))


D(1,0,e4)

--> halts with score 4e4+18.

This can be bounded by:

245<222(7.92×1028)<e4<σ<S<222(7.93×1028)

Placeholder

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD (bbch) is a tetrational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of around 10 ↑↑ 10.873987. Polygon analysed the TM by hand in September 2025, providing its score.

Pavel listed the halting tape as:

1 Z> 1^((8*<7; (6*2^((4b + 14)) - 4); (6*2^((48*2^(21) - 2)) - 4)> + 33)) 2

Analysis by Polygon

S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S 1 B> 0 S --> S <A 1^2 S [+4 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
   S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
   S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]

7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps]
8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps]

9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps]
10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf

11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps]

12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps]

Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf

  • Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
  • Rule 10: A(a, b, c) --> A(a,0,2b×c+2b×33) which becomes A(a,0,2b+1×33) if c = 3.
  • Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)

Further: let f(n)=2n+1×3

  • If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3)
  • A(a, 0, c) --> A(a2,c+3,3)>A(a2,0,f(c+3)3)
  • A(2k + d, b, 3) --> A(d,fk(b),3)

Trajectory

The TM enters configuration A(19, 2, 3) with S = 2 1 after 799 steps.

A(19, 2, 3) --> A(1,f9(2),3)>A(1,0,f10(2)3)

Let m = f10(2)3

--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf

Final trajectory:
0^inf 2 1 (11)^1 <D (11)^m 0^inf
--> 0^inf 2 1 1 2 A> (11)^m 0^inf
--> 0^inf 2 1 (12)^m+1 A> 0^inf
--> 0^inf 2 1 <A (11)^m+2 0^inf
--> 0^inf 2 1 D> (11)^m+2 0^inf
--> 0^inf (21)^m+3 D> 0^inf
--> 0^inf (21)^m+3 2 B> 0^inf
--> 0^inf (21)^m+3 2 <B 2 0^inf
--> 0^inf (21)^m+3 <C (12)^1 0^inf
--> 0^inf <C (11)^m+3 (12)^1 0^inf
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
Score = 2m + 9

Score calculated in HyperCalc:

(10^)^8 30,302,671.815163

Or in tetration: 10^^10.873987 (truncated)