User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Added overview of new TM
Polygon (talk | contribs)
Removed rule names
 
Line 21: Line 21:


b mod 2 = 0:
b mod 2 = 0:
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...) by rule 7
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...) by rule 9
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
   b = 0:
       a mod 2 = 0:
       a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...) by rule 10
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...) by rule 11
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: A(0, 0, c, ...) --> spin out by rule 12
         a = 0: A(0, 0, c, ...) --> spin out
       a mod 2 = 1:
       a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...) by rule 13
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ... by rule 14
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...) by rule 15
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
b mod 2 = 1:
   b ≥ 3:
   b ≥ 3:
       a mod 2 = 0:
       a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...) by rule 16
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
         a = 0:
             b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...) by rule 17
             b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
             b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ... by rule 18
             b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
       a mod 2 = 1:
       a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...) by rule 19
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ... by rule 20
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...) by rule 21
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
</pre>
Rules 12, 18 and 20 are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.
A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.


'''Accelerated rules:'''
'''Accelerated rules:'''
Line 53: Line 53:
by:
by:
A(0, 2k+1, c, ...)
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) by rule 17 [+8k +3]
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) by rule 16 [+10k +10]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) by rule 15 [+16k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]


A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
Line 64: Line 64:
A(0, 2k+1, c, ...)
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) by rule 17 [8k^2 +18k -49]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) by rule 21 [+8k^2 +36k + 3c -65]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]
</pre>
</pre>


Line 74: Line 74:


b mod 2 = 0:
b mod 2 = 0:
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) by rule 8
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...) by rule 9
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
   b = 0:
       a mod 2 = 0:
       a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...) by rule 10
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...) by rule 11
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: unreachable
         a = 0: unreachable
       a mod 2 = 1:
       a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...) by rule 13
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ... by rule 14
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...) by rule 15
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
b mod 2 = 1:
   b ≥ 3:
   b ≥ 3:
       a mod 2 = 0:
       a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...) by rule 16
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
         a = 0:
             b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
             b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
             b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...) by rule 17
             b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
             b = 3: unreachable
             b = 3: unreachable
       a mod 2 = 1:
       a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...) by rule 19
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: unreachable
         a = 1: unreachable
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...) by rule 21
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
</pre>


The TM starts in configuration A(0, 2, 0) after 7 steps.
The TM starts in configuration A(0, 2, 0) after 7 steps.

Latest revision as of 14:44, 3 November 2025

1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD (bbch) is a BB(6) holdout TM.

Analysis

Early rules:

S is any tape configuration

1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
   S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)

Later rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.

Accelerated rules:

R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)

A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]

A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1

A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]

Using the accelerated rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: unreachable
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: unreachable
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

The TM starts in configuration A(0, 2, 0) after 7 steps.