User:Polygon/Page for testing: Difference between revisions
Jump to navigation
Jump to search
Added rules |
→Analysis by Polygon: Copied in rest of behavior |
||
Line 56: | Line 56: | ||
25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf | 25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf | ||
</pre> | </pre> | ||
The following functions were used in these rules: | |||
g_1(n) = 3n + 4 | |||
Note that <math>(3^{k}-2) \times 3 + 4 = 3^{k+1} - 2</math> | |||
And 1 = 3^1 - 2 | |||
It follows that <math>g_1^{n}(1) = 3^{n+1}-2</math> | |||
<math>g_2(n) = 3^{3n + 7}-2</math> | |||
<math>g_3(n) = g_2^{2 \times (g_2(n)+3)}(1)</math> | |||
Further: | |||
Let L(a,b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf | |||
* L(a,4k+v) --> L(g_3^k(a),v) by rule 21 | |||
* L(a,0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25 | |||
* L(a,1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24 | |||
* L(a,2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23 | |||
* L(a,3) --> L(1,6*g_2(a)+12) by rule 22 | |||
The TM reaches configuration L(1,3) after running for 34 steps. | |||
L(1,3) --> L(1,6*g_2(1)+12) by rule 22, this can be simplified to L(1,354294), then: | |||
--> L(g_3^88573(1),2) by rule 21 | |||
--> 0^inf 1 Z> <math>(11)^{3 \times (g_2(g_3^{88573}(1)) +6}</math> 2 0^inf by rule 22 | |||
So <math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math>. | |||
This can be bunded by: | |||
<math>3 \uparrow\uparrow\uparrow 88574 < \sigma < S < 3 \uparrow\uparrow\uparrow 88575</math> |
Revision as of 11:33, 19 October 2025
1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD
(bbch) is a pentational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over . Polygon analysed the TM by hand in October 2025, providing its score.
Pavel listed the halting tape as:
1 Z> 1^(162*3^((3*<(243*3^(6) - 5)/2; (<(54*3^((3b + 11)/2) - 2); (54*3^((3b + 14)/2) - 6); (54*3^(7) - 6)> + 1); (<(54*3^((3*<(54*3^(7) - 3); (54*3^((3b + 14)/2) - 6); (54*3^((81*3^(7) - 2)) - 6)> + 14)/2) - 2); (54*3^((3b + 14)/2) - 6); (54*3^(7) - 6)> + 1)> + 11)/2)) 2
Analysis by Polygon
S is any tape configuration 1. S 1^a <C S --> S <C 1^a S [+a steps] 2. S 1^a <D S --> S <D 2^a S [+a steps] 3. S D> 2^a S --> S 1^a D> S [+a steps] 4. S (11)^a <A S --> S <A (22)^a S [+2a steps] S (11)^a <B S --> S <B (22)^a S [+2a steps] 5. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24 steps] 6. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3b A> S 7. 0^inf 2 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28 steps] 8. 0^inf 2 (11)^a A> 2 0 2 S --> 0^inf 2 1 (11)^a+3 A> S [+8a +27 steps] 9. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S 10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1^b(a) A> S 11-1. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 (11)^3a+4 A> 0 (22)^b-1 2 S 11-2. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S 12. 0^inf 2 (11)^a A> 0 11 S --> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31 steps] 13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S 14. 0^inf 2 1 (11)^a A> 0 2^3k+v S --> 0^inf 2 1 (11)^(g_2)^k(a) A> 0 2^v S 15. 0^inf 2 1 <A S --> 0^inf 1 D> 2^3 S [+8 steps] 16. 0^inf 2 1 (11)^a A> 0 2 1 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf (may be irrelevant) 17. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S 18. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^g_2(a) A> 2 S 19. 0^inf 2 1 (11)^a A> 2 1^3 S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S 19*. 0^inf 2 1 (11)^a A> 2 1^2 S --> 0^inf 1 (11)^3a+5 D> S 19**. 0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S 19*** 0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S 20. 0^inf 2 1 (11)^a A> 0 (22)^1 1^b S --> 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S 21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S 22. 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf 23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf Bonus rules which are not relevant for this TMs behavior: 24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf 25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
The following functions were used in these rules:
g_1(n) = 3n + 4
Note that
And 1 = 3^1 - 2
It follows that
Further:
Let L(a,b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf
- L(a,4k+v) --> L(g_3^k(a),v) by rule 21
- L(a,0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25
- L(a,1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24
- L(a,2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23
- L(a,3) --> L(1,6*g_2(a)+12) by rule 22
The TM reaches configuration L(1,3) after running for 34 steps.
L(1,3) --> L(1,6*g_2(1)+12) by rule 22, this can be simplified to L(1,354294), then:
--> L(g_3^88573(1),2) by rule 21
--> 0^inf 1 Z> 2 0^inf by rule 22
So .
This can be bunded by: