BB(2,6): Difference between revisions
→Top Halters: added Peacemaker's 10^^20k 2x6 halter |
Added the filled out table to the "Phase 1" section. |
||
Line 94: | Line 94: | ||
== Phase 1 == | == Phase 1 == | ||
The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2, | The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The last entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with very specific C++ code, lr_enum_continue, and a very specific parallel queuing system, Slurm: | ||
(done to reduce column size: | (done to reduce column size: | ||
Line 111: | Line 111: | ||
!rowspan="2" |Data | !rowspan="2" |Data | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |||
|2,278,655,696 | |||
|2,109,114,609 | |||
|7.44% | |||
|40.9 | |||
|1,150.90 | |||
|15,468.23 | |||
|style="text-align:left" |Reverse_Engineer_Filter.py | |||
|style="text-align:left" |[https://drive.google.com/drive/folders/1p9b5g-Id3WEMUYIwEnaKWRBGIW66ADjM?usp=drive_link Google Drive] | |||
|- | |- | ||
|style="text-align:left" | | |style="text-align:left" |Terry Ligocki | ||
| | |2,109,114,609 | ||
| | |683,067,538 | ||
| | |67.61% | ||
| | |452.8 | ||
| | |874.77 | ||
| | |1,293.79 | ||
|style="text-align:left" | | |style="text-align:left" |CPS_Filter.py --block-size=1 | ||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|683,067,538 | |||
|210,993,434 | |||
|69.11% | |||
|396.4 | |||
|330.85 | |||
|478.72 | |||
|style="text-align:left" |CPS_Filter.py --block-size=2 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|210,993,434 | |||
|141,680,232 | |||
|32.85% | |||
|273.9 | |||
|70.29 | |||
|213.97 | |||
|style="text-align:left" |CPS_Filter.py --block-size=3 --max_steps=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|141,680,232 | |||
|66,029,536 | |||
|53.40% | |||
|486.6 | |||
|43.18 | |||
|80.87 | |||
|style="text-align:left" |Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|66,029,536 | |||
|46,119,004 | |||
|30.15% | |||
|167.4 | |||
|33.05 | |||
|109.59 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|46,119,004 | |||
|39,034,142 | |||
|15.36% | |||
|170.1 | |||
|11.57 | |||
|75.34 | |||
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|39,034,142 | |||
|29,109,512 | |||
|25.43% | |||
|2,221.6 | |||
|1.24 | |||
|4.88 | |||
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|29,109,512 | |||
|24,536,819 | |||
|15.71% | |||
|384.2 | |||
|3.31 | |||
|21.05 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|24,536,819 | |||
|22,302,296 | |||
|9.11% | |||
|1,047.5 | |||
|0.59 | |||
|6.51 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|22,302,296 | |||
|20,358,011 | |||
|8.72% | |||
|1,350.0 | |||
|0.40 | |||
|4.59 | |||
|style="text-align:left" |lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false | |||
|} | |} | ||
Revision as of 18:50, 8 October 2025
The 2-state, 6-symbol Busy Beaver problem, BB(2,6), is unsolved. With cryptids like Hydra in the preceding domain BB(2,5), we know that we must solve a Collatz-like problem in order to solve BB(2,6).
The current BB(2,6) champion 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA
(bbch) was discovered by Pavel Kropitz in May 2023, proving the lower bound:
Top Halters
The scores are given using Knuth's up-arrow notation with an extension to decimal tetration[1]. The 20 highest known scoring machines are:
TM | Approximate sigma score | Discoverer |
---|---|---|
1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
10 ↑↑↑ 3 | Pavel Kropitz |
1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB (bbch)
|
10 ↑↑ 19892.08 | Peacemaker II |
1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ (bbch)
|
10 ↑↑ 91.17 | Pavel Kropitz |
1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA (bbch)
|
10 ↑↑ 70.27 | Shawn Ligocki |
1RB2LB1RZ3LA2LA4RB_1LA3RB4RB1LB5LB0RA (bbch)
|
10 ↑↑ 69.68 | Shawn Ligocki |
1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ (bbch)
|
10 ↑↑ 54.90 | Andrew Ducharme |
1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB (bbch)
|
10 ↑↑ 42.17 | Andrew Ducharme |
1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB (bbch)
|
10 ↑↑ 40.07 | Andrew Ducharme |
1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ (bbch)
|
10 ↑↑ 21.54 | Shawn Ligocki |
1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA (bbch)
|
10 ↑↑ 20.58 | Shawn Ligocki |
1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Shawn Ligocki |
1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Andrew Ducharme |
1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA (bbch)
|
10 ↑↑ 17.08 | Andrew Ducharme |
1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA (bbch)
|
10 ↑↑ 15.44 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA (bbch)
|
10 ↑↑ 14.35 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA (bbch)
|
10 ↑↑ 14.17 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA (bbch)
|
10 ↑↑ 14.05 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA (bbch)
|
10 ↑↑ 13.69 | Andrew Ducharme |
1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ (bbch)
|
10 ↑↑ 12.42 | Andrew Ducharme |
1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ (bbch)
|
10 ↑↑ 11.70 | Andrew Ducharme |
All decimal places are truncated.
Phase 1
The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The last entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with very specific C++ code, lr_enum_continue, and a very specific parallel queuing system, Slurm:
(done to reduce column size: = % Reduced, = Runtime (hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Terry Ligocki | 2,278,655,696 | 2,109,114,609 | 7.44% | 40.9 | 1,150.90 | 15,468.23 | Reverse_Engineer_Filter.py | Google Drive |
Terry Ligocki | 2,109,114,609 | 683,067,538 | 67.61% | 452.8 | 874.77 | 1,293.79 | CPS_Filter.py --block-size=1 | |
Terry Ligocki | 683,067,538 | 210,993,434 | 69.11% | 396.4 | 330.85 | 478.72 | CPS_Filter.py --block-size=2 | |
Terry Ligocki | 210,993,434 | 141,680,232 | 32.85% | 273.9 | 70.29 | 213.97 | CPS_Filter.py --block-size=3 --max_steps=10_000 | |
Terry Ligocki | 141,680,232 | 66,029,536 | 53.40% | 486.6 | 43.18 | 80.87 | Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000 | |
Terry Ligocki | 66,029,536 | 46,119,004 | 30.15% | 167.4 | 33.05 | 109.59 | Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
Terry Ligocki | 46,119,004 | 39,034,142 | 15.36% | 170.1 | 11.57 | 75.34 | CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000 | |
Terry Ligocki | 39,034,142 | 29,109,512 | 25.43% | 2,221.6 | 1.24 | 4.88 | CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000 | |
Terry Ligocki | 29,109,512 | 24,536,819 | 15.71% | 384.2 | 3.31 | 21.05 | Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
Terry Ligocki | 24,536,819 | 22,302,296 | 9.11% | 1,047.5 | 0.59 | 6.51 | Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
Terry Ligocki | 22,302,296 | 20,358,011 | 8.72% | 1,350.0 | 0.40 | 4.59 | lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false |
Phase 2
Starting from Terry Ligocki's holdouts list of 22,302,296 TMs, additional filtering has been performed:
(done to reduce column size: = % Reduced, = Compute Time (core-hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Input | Output | |||||||
Terry Ligocki | 22,302,296 | 20,246,662 | 9.2% | 23.0 | 24.80 | 269.09 | MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run | Google Drive |
Terry Ligocki | 20,246,662 | 19,134,631 | 5.5% | 83.4 | 3.71 | 67.46 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run | |
Terry Ligocki | 19,134,631 | 5,443,318 | 71.6% | 46.6 | 81.69 | 114.17 | chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run | |
Terry Ligocki | 5,443,318 | 3,400,118 | 37.5% | 16.3 | 34.87 | 92.90 | chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run | |
Terry Ligocki | 3,400,118 | 3,303,416 | 2.8% | 14.1 | 1.90 | 66.82 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run | |
Terry Ligocki | 3,303,416 | 3,249,427 | 1.6% | 16.5 | 0.91 | 55.59 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run | |
Terry Ligocki | 3,249,427 | 3,155,741 | 2.9% | 13.4 | 1.94 | 67.25 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run | |
Terry Ligocki | 3,155,741 | 2,246,891 | 28.8% | 14.1 | 17.93 | 62.24 | chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run | |
Terry Ligocki | 2,246,891 | 2,143,803 | 4.6% | 7.5 | 3.82 | 83.19 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run | |
Terry Ligocki | 2,143,803 | 1,938,663 | 9.6% | 7.5 | 7.58 | 79.21 | MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run | |
Terry Ligocki | 1,938,663 | 1,885,153 | 2.8% | 7.5 | 1.98 | 71.72 | chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |
Terry Ligocki | 1,885,153 | 1,848,887 | 1.9% | 10.5 | 0.96 | 49.68 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run | |
Terry Ligocki | 1,848,887 | 1,816,027 | 1.8% | 7.6 | 1.20 | 67.77 | chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run | |
Terry Ligocki | 1,816,027 | 1,688,951 | 7.0% | 10.4 | 3.40 | 48.66 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run |
References
- ↑ Shawn Ligocki. 2022. "Extending Up-arrow Notation"