User:Polygon/Page for testing: Difference between revisions
→Analysis by Polygon: Removed rule 29 as it isn't used by the TM |
Added second TM |
||
Line 1: | Line 1: | ||
{{TM| | {{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}} is a pentational halting [[BB(4,3)]] TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over <math>2 \uparrow^{4} 5</math>, making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score. | ||
Pavel listed the halting tape as: | Pavel listed the halting tape as: | ||
Line 160: | Line 160: | ||
<math>2 \uparrow^{4} 5 < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.92 \times 10^{28}) < e_4 < \sigma < S < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.93 \times 10^{28})</math> | <math>2 \uparrow^{4} 5 < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.92 \times 10^{28}) < e_4 < \sigma < S < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.93 \times 10^{28})</math> | ||
=Placeholder= | |||
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD (bbch) is a tetrational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of around 10 ↑↑ 10.873987. Polygon analysed the TM by hand in September 2025, providing its score. | |||
Pavel listed the halting tape as: | |||
<pre> | |||
1 Z> 1^((8*<7; (6*2^((4b + 14)) - 4); (6*2^((48*2^(21) - 2)) - 4)> + 33)) 2 | |||
</pre> | |||
==Analysis by Polygon== | |||
<pre> | |||
S is any tape configuration | |||
1. S D> 2^a S --> S 2^a D> S [+a steps] | |||
2. S B> 1^a S --> S 1^a B> S [+a steps] | |||
3. S 1 B> 0 S --> S <A 1^2 S [+4 steps] | |||
4. S D> (11)^a S --> S (21)^a D> S [+2a steps] | |||
S A> (11)^a S --> S (12)^a A> S [+2a steps] | |||
5. S (21)^a <C S --> S <C (11)^a S [+2a steps] | |||
S (12)^a <A S --> S <A (11)^a S [+2a steps] | |||
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] | |||
7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps] | |||
8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps] | |||
9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps] | |||
10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf | |||
11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps] | |||
12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps] | |||
</pre> | |||
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf | |||
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3) | |||
* Rule 10: A(a, b, c) --> <math>A(a,0,2^{b} \times c + 2^{b} \times 3 - 3)</math> which becomes <math>A(a,0,2^{b+1} \times 3 - 3)</math> if c = 3. | |||
* Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3) | |||
Further: let <math>f(n) = 2^{n+1} \times 3</math> | |||
* If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3) | |||
* A(a, 0, c) --> <math>A(a-2, c+3, 3) --> A(a-2, 0, f(c+3)-3)</math> | |||
* A(2k + d, b, 3) --> <math>A(d, f^{k}(b), 3)</math> | |||
Trajectory | |||
The TM enters configuration A(19, 2, 3) with S = 2 1 after 799 steps. | |||
A(19, 2, 3) --> <math>A(1, f^{9}(2), 3) --> A(1, 0, f^{10}(2)-3)</math> | |||
Let m = <math>f^{10}(2)-3</math> | |||
--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf | |||
<pre> | |||
Final trajectory: | |||
0^inf 2 1 (11)^1 <D (11)^m 0^inf | |||
--> 0^inf 2 1 1 2 A> (11)^m 0^inf | |||
--> 0^inf 2 1 (12)^m+1 A> 0^inf | |||
--> 0^inf 2 1 <A (11)^m+2 0^inf | |||
--> 0^inf 2 1 D> (11)^m+2 0^inf | |||
--> 0^inf (21)^m+3 D> 0^inf | |||
--> 0^inf (21)^m+3 2 B> 0^inf | |||
--> 0^inf (21)^m+3 2 <B 2 0^inf | |||
--> 0^inf (21)^m+3 <C (12)^1 0^inf | |||
--> 0^inf <C (11)^m+3 (12)^1 0^inf | |||
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf | |||
Score = 2m + 9 | |||
</pre> | |||
Score calculated in HyperCalc: | |||
(10^)^8 30,302,671.815163 | |||
Or in tetration: 10^^10.873987 (truncated) |
Revision as of 15:27, 5 October 2025
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD
(bbch) is a pentational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over , making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score.
Pavel listed the halting tape as:
1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19))
Analysis by Polygon
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S [+a steps] 2. S B> 1^a S --> S 1^a B> S [+a steps] 3. S A> 0^2 S --> S <A 1^2 S [+5 steps] 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] S A> (11)^a S --> S (12)^a A> S [+2a steps] 5. S (21)^a <C S --> S <C (11)^a S [+2a steps] S (12)^a <A S --> S <A (11)^a S [+2a steps] 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] 7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps] 8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps] 9. S D> 0^2 S --> S <B 2^2 S [+3 steps] 10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps] 11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps] 12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps] 13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps] 14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps] 15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps] 16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps] 17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf 18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf 19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf 20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf 21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf 22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf 23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf 24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf 25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf 26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf 27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf 28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let
Let , where
Rule 21 becomes:
- -->
- -->
Rule 23 becomes:
- D(a, 0, c) --> D(a-3, 2c+11, 1)
- D_1(a, 0, c) --> D_1(a-3, 2c+11, 1)
Rule 24 becomes:
- D(0, 0, c) --> D(c+1, 3, 1)
Rule 25 becomes:
- D(2, 0, c) --> D(2c+8, 3, 1)
Rule 26 becomes:
- D_1(1, 0, c) --> D_1(2c+7, 3, 1)
Rule 27 becomes:
- D_1(0, 0, c) --> D(2c+5, 3, 1)
Rule 28 becomes:
- D(1, 0, c) --> halt with score 4c + 18
By repeating rule 21, a stronger rule can be constructed:
- -->
- -->
If a is greater than or equal to 3: --> --> =
- -->
This rule can also be repeated, also note that and :
- -->
- -->
The TM starts in configuration D(2, 2, 1).
D(2, 2, 1) -->
f_1(n) = 2^(n+4)*3 - 5 Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1. Next, 3k+1 mod 3 = 1 So f_1(n) mod 3 = 1 Thus f_1^a(n) mod 3 = 1 f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1) Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n) Thus f_2(a,b) mod 3 = 1
--> -->
e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1
-->
--> -->
2e_3 + 7
Modulus: 2 + 7 --> 9 mod 3 = 0
-->
--> -->
e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1
-->
--> halts with score .
This can be bounded by:
Placeholder
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD (bbch) is a tetrational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of around 10 ↑↑ 10.873987. Polygon analysed the TM by hand in September 2025, providing its score.
Pavel listed the halting tape as:
1 Z> 1^((8*<7; (6*2^((4b + 14)) - 4); (6*2^((48*2^(21) - 2)) - 4)> + 33)) 2
Analysis by Polygon
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S [+a steps] 2. S B> 1^a S --> S 1^a B> S [+a steps] 3. S 1 B> 0 S --> S <A 1^2 S [+4 steps] 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] S A> (11)^a S --> S (12)^a A> S [+2a steps] 5. S (21)^a <C S --> S <C (11)^a S [+2a steps] S (12)^a <A S --> S <A (11)^a S [+2a steps] 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] 7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps] 8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps] 9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps] 10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf 11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps] 12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps]
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
- Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
- Rule 10: A(a, b, c) --> which becomes if c = 3.
- Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)
Further: let
- If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3)
- A(a, 0, c) -->
- A(2k + d, b, 3) -->
Trajectory
The TM enters configuration A(19, 2, 3) with S = 2 1 after 799 steps.
A(19, 2, 3) -->
Let m =
--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf
Final trajectory: 0^inf 2 1 (11)^1 <D (11)^m 0^inf --> 0^inf 2 1 1 2 A> (11)^m 0^inf --> 0^inf 2 1 (12)^m+1 A> 0^inf --> 0^inf 2 1 <A (11)^m+2 0^inf --> 0^inf 2 1 D> (11)^m+2 0^inf --> 0^inf (21)^m+3 D> 0^inf --> 0^inf (21)^m+3 2 B> 0^inf --> 0^inf (21)^m+3 2 <B 2 0^inf --> 0^inf (21)^m+3 <C (12)^1 0^inf --> 0^inf <C (11)^m+3 (12)^1 0^inf --> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf Score = 2m + 9
Score calculated in HyperCalc:
(10^)^8 30,302,671.815163
Or in tetration: 10^^10.873987 (truncated)