Green's machines: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
m (remove empty column)
(they are not champions πŸ₯€)
Β 
Line 1: Line 1:
In 1964, Milton W. Green hand-crafted a family of fast-growing Turing Machines with n-states, 2-symbols for all <math>n \ge 4</math>.<ref>Milton W. Green. β€œA Lower Bound on Rado’s Sigma Function for Binary Turing Machines”, ''Proceedings of the IEEE Fifth Annual Symposium on Switching Circuits Theory and Logical Design'', 1964, pages 91–94, [https://doi.org/10.1109%2FSWCT.1964.3 https://doi.org/10.1109/SWCT.1964.3]</ref> This family grows roughly as fast as the Ackermann function:<math display="block">BB_{2n} \approx 3 \uparrow^{n-2} 3</math> Β 
In 1964, Milton W. Green hand-crafted a family of fast-growing Turing Machines with n-states, 2-symbols for all <math>n \ge 4</math>.<ref>Milton W. Green. β€œA Lower Bound on Rado’s Sigma Function for Binary Turing Machines”, ''Proceedings of the IEEE Fifth Annual Symposium on Switching Circuits Theory and Logical Design'', 1964, pages 91–94, [https://doi.org/10.1109%2FSWCT.1964.3 https://doi.org/10.1109/SWCT.1964.3]</ref> This family grows roughly as fast as the Ackermann function:<math display="block">BB_{2n} \approx 3 \uparrow^{n-2} 3</math>
Β 
Over the years, these Turing Machines lost champion status. The last machines to lose champion status were BB(9), BB(10), and BB(11). In August 2024, Racheline discovered the better bounds <math>BB(9) > 10 \uparrow\uparrow 1820</math> and <math>BB(10) > 10 \uparrow\uparrow\uparrow\uparrow\uparrow 4 </math>.


== Machines ==
== Machines ==

Latest revision as of 08:51, 28 August 2025

In 1964, Milton W. Green hand-crafted a family of fast-growing Turing Machines with n-states, 2-symbols for all .[1] This family grows roughly as fast as the Ackermann function:

Over the years, these Turing Machines lost champion status. The last machines to lose champion status were BB(9), BB(10), and BB(11). In August 2024, Racheline discovered the better bounds and .

Machines

# States TM Sigma Score
4 1LB1RZ_0LC1LC_0LD0LC_1RD1RA (bbch) 7
5 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1RE1RC (bbch) 13
6 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1RF1RD (bbch) 35
7 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1RG1RE (bbch) 22,961
8 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1RH1RF (bbch)
9 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1RI1RG (bbch)
10 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1RJ1RH (bbch)
11 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1RK1RI (bbch)
12 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1LK1RH_0LL0LK_1RL1RJ (bbch)
13 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1LL1RI_0LM0LL_1RM1RK (bbch)
14 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1LK1RH_0LL0LK_1LM1RJ_0LN0LM_1RN1RL (bbch)
15 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1LL1RI_0LM0LL_1LN1RK_0LO0LN_1RO1RM (bbch)

External Links

References

  1. ↑ Milton W. Green. β€œA Lower Bound on Rado’s Sigma Function for Binary Turing Machines”, Proceedings of the IEEE Fifth Annual Symposium on Switching Circuits Theory and Logical Design, 1964, pages 91–94, https://doi.org/10.1109/SWCT.1964.3