Collatz-like: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(→‎Tetration Machine: Switch from "Tetration Machine" to "Exponential Collatz" which I think describes this example a little better.)
Line 88: Line 88:
Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref>
Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref>


=== Tetration Machine ===
=== Exponential Collatz ===
Consider the current [[1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|BB(6,2) Champion]] (discovered by Pavel Kropitz in May 2022) and consider the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:
Consider the current [[1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|BB(6,2) Champion]] (discovered by Pavel Kropitz in May 2022) and consider the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
Line 98: Line 98:
   K(4k+3) & \to & K(\frac{3^{k+3} +  1}{2}) \\
   K(4k+3) & \to & K(\frac{3^{k+3} +  1}{2}) \\
\end{array}</math>
\end{array}</math>
Demonstrating Collatz-like behavior with exponential piecewise component functions.


Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>

Revision as of 17:39, 30 May 2025

A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:

A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.

Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.

Definitions

An -ary Collatz-like function of degree is a partial function of the form

where is a positive integer and are (not necessarily distinct) univariate polynomials with rational coefficients of at most degree . This definition is often restricted to those functions of degree one.

For any given -ary Collatz-like function and some two indexed series of nonempty subsets of the integers, we can write the well-formed formula

where is the -th iterate of on . Proving or disproving a formula of the above form is a Collatz-like problem. Collatz-like functions and problems are named for the unsolved Collatz conjecture, equivalent to , where

Many cryptids exhibit Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function. For example, Antihydra's halting status is directly related to the truth value of where

Examples

BB(5,2) Champion

Consider the BB(5,2) Champion and the generalized configuration:

Pascal Michel showed that:

Starting on a blank tape , these rules iterate 15 times before reaching the halt config.[1]

Hydra

Consider Hydra (a Cryptid) and the generalized configuration:

Daniel Yuan showed that:

Where is a halting configuration with non-zero symbols on the tape.

Starting from config this simulates a pseudo-random walk along the parameter, increasing it by 2 every time is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function

starting from 3:

Specifically, will it ever reach a point where the cumulative number of E (even transitions) applied is greater than twice the number of O (odd transitions) applied?[2]

Exponential Collatz

Consider the current BB(6,2) Champion (discovered by Pavel Kropitz in May 2022) and consider the general configuration:

Shawn Ligocki showed that:

Demonstrating Collatz-like behavior with exponential piecewise component functions.

Starting from config , these rules iterate 15 times before reaching the halt config leaving over non-zero symbols on the tape.[3]

References