BB(2,5): Difference between revisions
m (Fix) |
(Updated introduction for consistency and style fixes) |
||
Line 1: | Line 1: | ||
The 2-state, 5-symbol Busy Beaver problem '''BB(2,5)''' is unsolved. With the discovery of the [[Cryptids|Cryptid]] machine [[Hydra]] | The 2-state, 5-symbol Busy Beaver problem, '''BB(2,5)''', is unsolved. With the discovery of the [[Cryptids|Cryptid]] machine [[Hydra]] in April 2024, we now know that we must solve a [[Collatz-like]] problem in order to solve BB(2,5) and thus [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2,5) is Hard]. | ||
The current BB(2,5) champion | The current BB(2,5) champion {{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}} was discovered by Daniel Yuan in June 2024, proving the lower bounds: | ||
<math display="block">S(2,5) > \Sigma(2,5) > 10^{10^{10^{3\,314\,360}}} > 10 \uparrow\uparrow 4</math> | <math display="block">S(2,5) > \Sigma(2,5) > 10^{10^{10^{3\,314\,360}}} > 10 \uparrow\uparrow 4</math> | ||
If it turns out to be the actual champion, it would the only known champion machine that exhibits [[Counter]] behavior. | |||
== Cryptids == | == Cryptids == | ||
Line 14: | Line 16: | ||
In April 2024, Shawn Ligocki publicly released a list of 23,411 undecided BB(2,5) machines. Justin Blanchard then made substantial progress over the course of the next month, reducing the list to 499 holdouts by late May 2024. In June 2024, @mxdys cut down the list to 273 using halting and inductive deciders, and again to 217 using [[Closed Tape Language (CTL)|CTL]]. In February 2025, @mxdys ran a decider pipeline in Coq that resulted in only 173 holdouts. Since then, additional machines have been proven in Coq using both deciders and individual proofs. | In April 2024, Shawn Ligocki publicly released a list of 23,411 undecided BB(2,5) machines. Justin Blanchard then made substantial progress over the course of the next month, reducing the list to 499 holdouts by late May 2024. In June 2024, @mxdys cut down the list to 273 using halting and inductive deciders, and again to 217 using [[Closed Tape Language (CTL)|CTL]]. In February 2025, @mxdys ran a decider pipeline in Coq that resulted in only 173 holdouts. Since then, additional machines have been proven in Coq using both deciders and individual proofs. | ||
On 29 Mar 2025, @mxdys published a list of 83 holdouts that withstood state-of-the-art Coq deciders. Some of these machines were already decided before. | On [https://discord.com/channels/960643023006490684/1259770421046411285/1355593937531961365 29 Mar 2025], @mxdys published a list of 83 holdouts that withstood state-of-the-art Coq deciders. Some of these machines were already decided before. | ||
== Holdouts == | == Holdouts == | ||
This section is based on @mxdys's March 2025 | This section is based on @mxdys's March 2025 holdouts list of 83 TMs. | ||
=== Cryptids === | === Cryptids === |
Revision as of 12:16, 17 May 2025
The 2-state, 5-symbol Busy Beaver problem, BB(2,5), is unsolved. With the discovery of the Cryptid machine Hydra in April 2024, we now know that we must solve a Collatz-like problem in order to solve BB(2,5) and thus BB(2,5) is Hard.
The current BB(2,5) champion 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ
(bbch) was discovered by Daniel Yuan in June 2024, proving the lower bounds:
If it turns out to be the actual champion, it would the only known champion machine that exhibits Counter behavior.
Cryptids
Known BB(2,5) Cryptids
1RB3RB---3LA1RA_2LA3RA4LB0LB0LA
(bbch), known as Hydra.1RB3RB---3LA1RA_2LA3RA4LB0LB1LB
(bbch), known as the bonus cryptid
Certified progress
In April 2024, Shawn Ligocki publicly released a list of 23,411 undecided BB(2,5) machines. Justin Blanchard then made substantial progress over the course of the next month, reducing the list to 499 holdouts by late May 2024. In June 2024, @mxdys cut down the list to 273 using halting and inductive deciders, and again to 217 using CTL. In February 2025, @mxdys ran a decider pipeline in Coq that resulted in only 173 holdouts. Since then, additional machines have been proven in Coq using both deciders and individual proofs.
On 29 Mar 2025, @mxdys published a list of 83 holdouts that withstood state-of-the-art Coq deciders. Some of these machines were already decided before.
Holdouts
This section is based on @mxdys's March 2025 holdouts list of 83 TMs.
Cryptids
1RB3RB---3LA1RA_2LA3RA4LB0LB0LA
(bbch). Hydra1RB3RB---3LA1RA_2LA3RA4LB0LB1LB
(bbch). Bonus cryptid
Unsolved
1RB---4LB1RA4RA_2LB2LA3RA4LB0RB
(bbch).1RB---4LB0LA4RA_2LB2LA3RA4LB0RB
(bbch).1RB---0RB0LA2RA_2LB2LA3RA4LB0LB
(bbch). Shift overflow counter, potential cryptid1RB3LA1LA1RA3RA_2LB2RA---4RB1LB
(bbch). Potential cryptid1RB3LA1LA1RA1RA_2LB2RA---4RB1LB
(bbch). Potential cryptid1RB3LA1LA4LA2RA_2LB2RA---0RA0RB
(bbch).1RB4RA1LA4RB2LA_2LB3LA1RB2RA---
(bbch).1RB---3RA2LA2RB_2LB3LA4LB4RA0RA
(bbch).1RB4LA1RA1RB1LA_2LB3LA---4RA2RB
(bbch). BMO 3 variant?1RB---4RB2RB4LA_2LB3LA3LB0RA0RB
(bbch). Bouncer + chaotic counter1RB2RB3LA4LA1LA_2LB3RA---4RA1RB
(bbch).1RB3RB3LA4LA2RB_2LB3RA---1RA1LA
(bbch).1RB2LA4LA1RA1LA_2LB3RB4RB---2RA
(bbch).1RB4RB4RA1LA3LA_1LB2LA3RB2RB---
(bbch).1RB3RA3RB4LA1LA_1LB2LA1LA---1RB
(bbch). Potentially halt1RB2RA4LA1RB4RB_1LB2LA3RA---0LB
(bbch).1RB3RB1LA2LA3RA_1LB2RA4RB0LA---
(bbch).1RB3LA1LA2RB2LB_1LB2RA4RA0RB---
(bbch).1RB2LA0RB0LB3LB_2LA4RB3RA0RA---
(bbch).1RB2RA3LB---2LB_2LA0LA4RB0RB1LA
(bbch). 30% chance of beating current champion1RB2RA3LB4LA---_2LA0RB1LA2RB0RA
(bbch). Analysis by @dyuan01 and @Legion1RB2RA3LA---2LB_2LA4RA4RB0RB0LA
(bbch). Spaghetti analysis by @nerdyjoe1RB2RA3LA4LA2RB_2LA---3LB1RA3RA
(bbch). Bouncer + chaotic counter1RB2RA3LA4LA2RB_2LA3RB---0RA1LA
(bbch). Longitudinal analysis suggests chaotic1RB3LA1RA4LA2RA_2LA---1LA0RA3RB
(bbch). Longitudinal analysis suggests chaotic1RB3LA3LB0RB0LA_2LA4RB1LB1RA---
(bbch).1RB3LA1LA2RB2RA_2LA4RA3LB1RA---
(bbch).1RB3LA3LA0RB2LB_2LA4LA4RA2RA---
(bbch).1RB3RA2LB1LB1RB_2LA2RA4LA1LA—--
(bbch). Skelet 17-like1RB3RA4LB2RA2RB_2LA---3LA0LB1LA
(bbch).1RB0LB2LA4LB3LA_2LA---3RA4RB2RB
(bbch).1RB2LB3LA0RA1LB_2LA4RA3RB3LA---
(bbch). Analysis by @nerdyjoe1RB2RB---0LB3LA_2LA2LB3RB4RB1LB
(bbch). Longitudinal analysis suggests chaotic1RB2RB4LA2RA1LA_2LA4RA3LA---3RA
(bbch). Longitudinal analysis suggests chaotic1RB3LB---4LA1RB_2LA4LA4LB3RB1RA
(bbch). Longitudinal analysis suggests chaotic1RB3LB0RB---2LB_2LA3RA4RB2RB0LA
(bbch).1RB3LB4LA0LB---_2LA0LA1RB0RA3RA
(bbch).1RB3RB1LB---2RB_2LA1RA4LB2LA2RA
(bbch). Skelet 17-like1RB3RB---4RA2RA_2LA2RA3LB4LB1LB
(bbch).1RB3RB---0RA2RB_2LA4RA3LB1LB1LA
(bbch).1RB3RB1LB2RA---_2LA2RB1LA4LB0RA
(bbch).1RB2LA1RA---1LA_1LA4RB3LB0RB2RB
(bbch). Fractal?1RB2LA3LA4RA0LA_1LA3RB1RB1LB---
(bbch). Fractal?1RB2LA0RB1LA3LB_1LA3LB1RA4RA---
(bbch).1RB2LA0RB4LB1RA_1LA3RA1RA---0LA
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4RB0LB
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB2RB
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB2LB
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB1RB
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB1LB
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB0RB
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB0LB
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB3RA
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB2RA
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB2LA
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB1RA
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB1LA
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB0RA
(bbch).1RB2LA0RB1LB---_1LA3RA1RA4LB0LA
(bbch).1RB2LA0RB1LB0LB_1LA3RA1RA4RA---
(bbch).1RB2LA0RB---4LA_1LA3LA1RA4RA1LB
(bbch).1RB2LA0RB4LB0LA_1LA3LA1RA4RA---
(bbch).1RB2LA4RA1LA3LA_0LA2RB3RB2LB---
(bbch). 1D CA-like1RB2LA4RA1LA3LA_0LA3RB3LB2RB---
(bbch). 1D CA-like1RB2LA1LA4RA2LA_0LA3RB3LB2RB---
(bbch). 1D CA-like1RB2LA3LA4RA1LA_0LA3LB3RB1RB---
(bbch). 1D CA-like1RB2LA0LB1LA2RA_0LA3RA1RA4LB—--
(bbch). Potential bouncer1RB2LA3LB4LB---_0LA4LB3RA4LA0RB
(bbch). Fractal?
Solved with moderate rigor
1RB1RB3LA4LA2RA_2LB3RA---3RA4RB
(bbch). BMO problem 31RB0RB3LA4LA2RA_2LB3RA---3RA4RB
(bbch). BMO problem 31RB4LA1LB2LA0RB_2LB3RB4LA---1RA
(bbch). Nonhalting argument by @dyuan1RB3LA4RB0RB2LA_1LB2LA3LA1RA---
(bbch). Current champion1RB2RA3LA4RB---_2LA3RB3RA1LB3LB
(bbch). Counter that halts in at most 56452325275 steps1RB2RA3LA4LA2RB_2LA---1LA1RA3RA
(bbch). Longitudinal analysis by @Legion implies halting1RB3LA4LA1LA2RA_2LA4RB---0RA0LA
(bbch). Longitudinal analysis by @Legion implies halting1RB3LA4LA2RB1LA_2LA4RB---3RA3LA
(bbch). Longitudinal analysis by @Legion implies halting1RB2LB---4LB0RB_1LA3RB4RB4RA1LB
(bbch). Nonhalting argument by @racheline
Formally proven
1RB2RA3LA4LA2RB_2LA0RA---0RA1LA
(bbch). Coq-decided by @mxdys. Longitudinal analysis by @Legion implies nonhalting