Hydra: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
MrSolis (talk | contribs)
mNo edit summary
MrSolis (talk | contribs)
mNo edit summary
Line 28: Line 28:
With <math>C(a,b)</math> we have <math>P(0,a)</math>. As a result, we can apply this rule <math display="inline">\big\lfloor\frac{1}{2}a\big\rfloor</math> times, which creates two possible scenarios:
With <math>C(a,b)</math> we have <math>P(0,a)</math>. As a result, we can apply this rule <math display="inline">\big\lfloor\frac{1}{2}a\big\rfloor</math> times, which creates two possible scenarios:
#If <math>a\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(a/2)-1}(4\times 3i+26)=\textstyle\frac{3}{2}a^2+10a</math> steps we arrive at <math display="inline">P\Big(\frac{3}{2}a,0\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3/2)a}\;\textrm{A>}\;02\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;3^b\;2\;0^\infty.</math> If <math>b=0</math> then we have reached the undefined <code>A2</code> transition in <math display="inline">\frac{3}{2}a^2+10a+4</math> steps total. Otherwise, continuing for three steps gives us <math>0^\infty\;3^{(3/2)+2}\;\textrm{<B}\;0\;3^{b-1}\;2\;0^\infty</math>. Another shift rule is required here:<math display="block">\begin{array}{|c|}\hline3^s\;\textrm{<B}\xrightarrow{s}\textrm{<B}\;0^s\\\hline\end{array}</math>This means the configuration becomes <math>0^\infty\;\textrm{<B}\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math> in <math display="inline">\frac{3}{2}a+2</math> steps, and <math>0^\infty\;\textrm{<A}\;2\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3}{2}a+3,b-1\Big)</math>, one step later. This gives a total of <math display="inline">\frac{3}{2}a^2+\frac{23}{2}a+10</math> steps.
#If <math>a\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(a/2)-1}(4\times 3i+26)=\textstyle\frac{3}{2}a^2+10a</math> steps we arrive at <math display="inline">P\Big(\frac{3}{2}a,0\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3/2)a}\;\textrm{A>}\;02\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;3^b\;2\;0^\infty.</math> If <math>b=0</math> then we have reached the undefined <code>A2</code> transition in <math display="inline">\frac{3}{2}a^2+10a+4</math> steps total. Otherwise, continuing for three steps gives us <math>0^\infty\;3^{(3/2)+2}\;\textrm{<B}\;0\;3^{b-1}\;2\;0^\infty</math>. Another shift rule is required here:<math display="block">\begin{array}{|c|}\hline3^s\;\textrm{<B}\xrightarrow{s}\textrm{<B}\;0^s\\\hline\end{array}</math>This means the configuration becomes <math>0^\infty\;\textrm{<B}\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math> in <math display="inline">\frac{3}{2}a+2</math> steps, and <math>0^\infty\;\textrm{<A}\;2\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3}{2}a+3,b-1\Big)</math>, one step later. This gives a total of <math display="inline">\frac{3}{2}a^2+\frac{23}{2}a+10</math> steps.
#If <math>a\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{2}a^2+7a-\frac{17}{2}</math> steps we arrive at <math display="inline">P\Big(\frac{3a-3}{2},1\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3a-3)/2}\;\textrm{A>}\;020\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{A>}\;0\;3^b\;2\;0^\infty</math>, and then <math>0^\infty\;3^{(3a-1)/2}\;1\;3^b\;\textrm{A>}\;02\;0^\infty</math> in <math>3b</math> steps. After 14 steps, we see the configuration <math>0^\infty\;3^{(3a-1)/2}\;1\;3^{b+3}\;\textrm{<A}\;2\;0^\infty</math>, which turns into <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{<A}\;3^{b+3}\;2\;0^\infty</math> in <math>b+3</math> steps. In two steps we get <math>0^\infty\;3^{(3a+1)/2}\;\textrm{<B}\;0\;3^{b+2}\;2\;0^\infty</math>, followed by <math>0^\infty\;\textrm{<B}\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math> after another <math display="inline">\frac{3a+1}{2}</math> steps. We conclude with <math>0^\infty\;\textrm{<A}\;2\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3a+3}{2},b+2\Big)</math>, one step later. This gives a total of <math display="inline">4b+\frac{3}{2}a^2+\frac{17}{2}a+16</math> steps.
#If <math>a\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{2}a^2+7a-\frac{17}{2}</math> steps we arrive at <math display="inline">P\Big(\frac{3a-3}{2},1\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3a-3)/2}\;\textrm{A>}\;020\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{A>}\;0\;3^b\;2\;0^\infty</math>, and then <math>0^\infty\;3^{(3a-1)/2}\;1\;3^b\;\textrm{A>}\;02\;0^\infty</math> in <math>3b</math> steps. After 14 steps, we see the configuration <math>0^\infty\;3^{(3a-1)/2}\;1\;3^{b+3}\;\textrm{<A}\;2\;0^\infty</math>, which turns into <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{<A}\;3^{b+3}\;2\;0^\infty</math> in <math>b+3</math> steps. In two steps we get <math>0^\infty\;3^{(3a+1)/2}\;\textrm{<B}\;0\;3^{b+2}\;2\;0^\infty</math>, followed by <math>0^\infty\;\textrm{<B}\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math> after <math display="inline">\frac{3a+1}{2}</math> more steps. We conclude with <math>0^\infty\;\textrm{<A}\;2\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3a+3}{2},b+2\Big)</math>, one step later. This gives a total of <math display="inline">4b+\frac{3}{2}a^2+\frac{17}{2}a+16</math> steps.
The information above can be summarized as
The information above can be summarized as
<math display="block">C(a,b)\rightarrow\begin{cases}0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;2\;0^\infty&\text{if }a\equiv0\pmod{2}\text{ and }b=0,\\C\Big(\frac{3}{2}a+3,b-1\Big)&\text{if }a\equiv0\pmod{2}\text{ and }b>0,\\C\Big(\frac{3a+3}{2},b+2\Big)&\text{if }a\equiv1\pmod2.\end{cases}</math>
<math display="block">C(a,b)\rightarrow\begin{cases}0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;2\;0^\infty&\text{if }a\equiv0\pmod{2}\text{ and }b=0,\\C\Big(\frac{3}{2}a+3,b-1\Big)&\text{if }a\equiv0\pmod{2}\text{ and }b>0,\\C\Big(\frac{3a+3}{2},b+2\Big)&\text{if }a\equiv1\pmod2.\end{cases}</math>
Substituting <math>a\leftarrow 2a</math> for the first two cases and <math>a\leftarrow 2a+1</math> for the third yields the final result.
Substituting <math>a\leftarrow 2a</math> for the first two cases and <math>a\leftarrow 2a+1</math> for the third yields the final result.
</div></div>
</div></div>
== Trajectory ==
== Trajectory ==
It takes 20 steps to reach the configuration <math>C(3,0)</math>, and from there, the [[Collatz-like]] rules are repeatedly applied. Simulating Hydra has shown that after 4000000 rule steps, we have <math>b=2005373</math>. Here are the first few:
It takes 20 steps to reach the configuration <math>C(3,0)</math>, and from there, the [[Collatz-like]] rules are repeatedly applied. Simulating Hydra has shown that after 4000000 rule steps, we have <math>b=2005373</math>. Here are the first few:

Revision as of 04:23, 5 March 2025

Unsolved problem:
Does Hydra run forever?

1RB3RB---3LA1RA_2LA3RA4LB0LB0LA (bbch)

Hydra is a BB(2,5) Cryptid. Similarly to Antihydra, it simulates repeatedly applying the function H(n)=32n, but starting at n=3 and swapping the roles of the even and odd terms of this sequence. The obstacles to proving whether or not this Turing machine halts are equally as serious as that machine.

Description

The transition table of Hydra.

Hydra basically tracks the progress of the integer ordered pair (x,y) starting at (3,0), which is represented on the tape as x consecutive 0s and to the right, y consecutive 3s. As time passes, the head moves back and forth, replacing those 0s with 3s, two at a time. Because the head visits a new cell on the left every time this happens, the number of 3s on the tape is approximately 32x when this process finishes. From here, most of those 3s are swiftly turned back into 0s, generating a new ordered pair. However, there are two ways this could happen. If x was even, then y will decrease by one or halt Hydra if it drops below 0. Otherwise, y will increase by 2. The problem of whether or not Hydra halts is unsolved, and can be restated like so:

If the quantities of even and odd numbers found are counted as the function h(2n)=3nh(2n+1)=3n+1 is applied continually, starting at 3, then does the count of even numbers ever exceed twice the count of odd numbers?

Attributions

Hydra and its high-level rules were first reported on Discord by Daniel Yuan on 20 April 2024.

Analysis

Let C(a,b):=0<A20a3b20. Then,[1] C(2a,0)6a2+20a+4033a+11A>20,C(2a,b+1)6a2+23a+10C(3a+3,b),C(2a+1,b)4b+6a2+23a+26C(3a+3,b+2). By scaling and translating these rules we acquire the Hydra function that relates it to Antihydra.[2]

Proof

Consider the partial configuration P(m,n):=03mA>020n. After 14 steps this configuration becomes 03m+3<A20n2. We note the following shift rule: 3s<As<A3s Using this shift rule, we get 0<A3m+320n2 in m+3 steps. From here, we can observe that A>03s turns into 3A>03s1 in three steps if s1. By repeating this process, we acquire this transition rule: A>03s3s3sA>0 With this rule, it takes 3m+9 steps to reach the configuration 03m+3A>020n2, which is the same configuration as P(m+3,n2). To summarize: P(m,n)4m+26P(m+3,n2) if n2. With C(a,b) we have P(0,a). As a result, we can apply this rule 12a times, which creates two possible scenarios:

  1. If a0 (mod2), then in i=0(a/2)1(4×3i+26)=32a2+10a steps we arrive at P(32a,0). The matching complete configuration is 03(3/2)aA>023b20, which in four steps becomes 03(3/2)a+11A>3b20. If b=0 then we have reached the undefined A2 transition in 32a2+10a+4 steps total. Otherwise, continuing for three steps gives us 03(3/2)+2<B03b120. Another shift rule is required here:3s<Bs<B0sThis means the configuration becomes 0<B0(3/2)a+33b120 in 32a+2 steps, and 0<A20(3/2)a+33b120, equal to C(32a+3,b1), one step later. This gives a total of 32a2+232a+10 steps.
  2. If a1 (mod2), then in 32a2+7a172 steps we arrive at P(3a32,1). The matching complete configuration is 03(3a3)/2A>0203b20, which in four steps becomes 03(3a1)/21A>03b20, and then 03(3a1)/213bA>020 in 3b steps. After 14 steps, we see the configuration 03(3a1)/213b+3<A20, which turns into 03(3a1)/21<A3b+320 in b+3 steps. In two steps we get 03(3a+1)/2<B03b+220, followed by 0<B0(3a+3)/23b+220 after 3a+12 more steps. We conclude with 0<A20(3a+3)/23b+220, equal to C(3a+32,b+2), one step later. This gives a total of 4b+32a2+172a+16 steps.

The information above can be summarized as C(a,b){03(3/2)a+11A>20if a0(mod2) and b=0,C(32a+3,b1)if a0(mod2) and b>0,C(3a+32,b+2)if a1(mod2). Substituting a2a for the first two cases and a2a+1 for the third yields the final result.

Trajectory

It takes 20 steps to reach the configuration C(3,0), and from there, the Collatz-like rules are repeatedly applied. Simulating Hydra has shown that after 4000000 rule steps, we have b=2005373. Here are the first few: C(3,0)55C(6,2)133C(12,1)364C(21,0)856C(33,2)1938C(51,4)4367C(78,6) The heuristic argument that suggests Antihydra is a probviously nonhalting machine can be applied here. This means that if b is to be thought of as moving randomly, then the probability of Hydra halting is (512)20053744.168×10419099.

To view an animation of the blank tape becoming C(21,0) in 572 steps, click here.

References

  1. S. Ligocki, "BB(2, 5) is Hard (Hydra) (2024). Accessed 22 July 2024.
  2. S. Ligocki, "BB(6) is Hard (Antihydra)" (2024). Accessed 22 July 2024.