Hydra: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 28: | Line 28: | ||
With <math>C(a,b)</math> we have <math>P(0,a)</math>. As a result, we can apply this rule <math display="inline">\big\lfloor\frac{1}{2}a\big\rfloor</math> times, which creates two possible scenarios: | With <math>C(a,b)</math> we have <math>P(0,a)</math>. As a result, we can apply this rule <math display="inline">\big\lfloor\frac{1}{2}a\big\rfloor</math> times, which creates two possible scenarios: | ||
#If <math>a\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(a/2)-1}(4\times 3i+26)=\textstyle\frac{3}{2}a^2+10a</math> steps we arrive at <math display="inline">P\Big(\frac{3}{2}a,0\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3/2)a}\;\textrm{A>}\;02\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;3^b\;2\;0^\infty.</math> If <math>b=0</math> then we have reached the undefined <code>A2</code> transition in <math display="inline">\frac{3}{2}a^2+10a+4</math> steps total. Otherwise, continuing for three steps gives us <math>0^\infty\;3^{(3/2)+2}\;\textrm{<B}\;0\;3^{b-1}\;2\;0^\infty</math>. Another shift rule is required here:<math display="block">\begin{array}{|c|}\hline3^s\;\textrm{<B}\xrightarrow{s}\textrm{<B}\;0^s\\\hline\end{array}</math>This means the configuration becomes <math>0^\infty\;\textrm{<B}\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math> in <math display="inline">\frac{3}{2}a+2</math> steps, and <math>0^\infty\;\textrm{<A}\;2\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3}{2}a+3,b-1\Big)</math>, one step later. This gives a total of <math display="inline">\frac{3}{2}a^2+\frac{23}{2}a+10</math> steps. | #If <math>a\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(a/2)-1}(4\times 3i+26)=\textstyle\frac{3}{2}a^2+10a</math> steps we arrive at <math display="inline">P\Big(\frac{3}{2}a,0\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3/2)a}\;\textrm{A>}\;02\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;3^b\;2\;0^\infty.</math> If <math>b=0</math> then we have reached the undefined <code>A2</code> transition in <math display="inline">\frac{3}{2}a^2+10a+4</math> steps total. Otherwise, continuing for three steps gives us <math>0^\infty\;3^{(3/2)+2}\;\textrm{<B}\;0\;3^{b-1}\;2\;0^\infty</math>. Another shift rule is required here:<math display="block">\begin{array}{|c|}\hline3^s\;\textrm{<B}\xrightarrow{s}\textrm{<B}\;0^s\\\hline\end{array}</math>This means the configuration becomes <math>0^\infty\;\textrm{<B}\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math> in <math display="inline">\frac{3}{2}a+2</math> steps, and <math>0^\infty\;\textrm{<A}\;2\;0^{(3/2)a+3}\;3^{b-1}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3}{2}a+3,b-1\Big)</math>, one step later. This gives a total of <math display="inline">\frac{3}{2}a^2+\frac{23}{2}a+10</math> steps. | ||
#If <math>a\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{2}a^2+7a-\frac{17}{2}</math> steps we arrive at <math display="inline">P\Big(\frac{3a-3}{2},1\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3a-3)/2}\;\textrm{A>}\;020\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{A>}\;0\;3^b\;2\;0^\infty</math>, and then <math>0^\infty\;3^{(3a-1)/2}\;1\;3^b\;\textrm{A>}\;02\;0^\infty</math> in <math>3b</math> steps. After 14 steps, we see the configuration <math>0^\infty\;3^{(3a-1)/2}\;1\;3^{b+3}\;\textrm{<A}\;2\;0^\infty</math>, which turns into <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{<A}\;3^{b+3}\;2\;0^\infty</math> in <math>b+3</math> steps. In two steps we get <math>0^\infty\;3^{(3a+1)/2}\;\textrm{<B}\;0\;3^{b+2}\;2\;0^\infty</math>, followed by <math>0^\infty\;\textrm{<B}\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math> after | #If <math>a\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{2}a^2+7a-\frac{17}{2}</math> steps we arrive at <math display="inline">P\Big(\frac{3a-3}{2},1\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3a-3)/2}\;\textrm{A>}\;020\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{A>}\;0\;3^b\;2\;0^\infty</math>, and then <math>0^\infty\;3^{(3a-1)/2}\;1\;3^b\;\textrm{A>}\;02\;0^\infty</math> in <math>3b</math> steps. After 14 steps, we see the configuration <math>0^\infty\;3^{(3a-1)/2}\;1\;3^{b+3}\;\textrm{<A}\;2\;0^\infty</math>, which turns into <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{<A}\;3^{b+3}\;2\;0^\infty</math> in <math>b+3</math> steps. In two steps we get <math>0^\infty\;3^{(3a+1)/2}\;\textrm{<B}\;0\;3^{b+2}\;2\;0^\infty</math>, followed by <math>0^\infty\;\textrm{<B}\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math> after <math display="inline">\frac{3a+1}{2}</math> more steps. We conclude with <math>0^\infty\;\textrm{<A}\;2\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3a+3}{2},b+2\Big)</math>, one step later. This gives a total of <math display="inline">4b+\frac{3}{2}a^2+\frac{17}{2}a+16</math> steps. | ||
The information above can be summarized as | The information above can be summarized as | ||
<math display="block">C(a,b)\rightarrow\begin{cases}0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;2\;0^\infty&\text{if }a\equiv0\pmod{2}\text{ and }b=0,\\C\Big(\frac{3}{2}a+3,b-1\Big)&\text{if }a\equiv0\pmod{2}\text{ and }b>0,\\C\Big(\frac{3a+3}{2},b+2\Big)&\text{if }a\equiv1\pmod2.\end{cases}</math> | <math display="block">C(a,b)\rightarrow\begin{cases}0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;2\;0^\infty&\text{if }a\equiv0\pmod{2}\text{ and }b=0,\\C\Big(\frac{3}{2}a+3,b-1\Big)&\text{if }a\equiv0\pmod{2}\text{ and }b>0,\\C\Big(\frac{3a+3}{2},b+2\Big)&\text{if }a\equiv1\pmod2.\end{cases}</math> | ||
Substituting <math>a\leftarrow 2a</math> for the first two cases and <math>a\leftarrow 2a+1</math> for the third yields the final result. | Substituting <math>a\leftarrow 2a</math> for the first two cases and <math>a\leftarrow 2a+1</math> for the third yields the final result. | ||
</div></div> | </div></div> | ||
== Trajectory == | == Trajectory == | ||
It takes 20 steps to reach the configuration <math>C(3,0)</math>, and from there, the [[Collatz-like]] rules are repeatedly applied. Simulating Hydra has shown that after 4000000 rule steps, we have <math>b=2005373</math>. Here are the first few: | It takes 20 steps to reach the configuration <math>C(3,0)</math>, and from there, the [[Collatz-like]] rules are repeatedly applied. Simulating Hydra has shown that after 4000000 rule steps, we have <math>b=2005373</math>. Here are the first few: |
Revision as of 04:23, 5 March 2025
1RB3RB---3LA1RA_2LA3RA4LB0LB0LA
(bbch)
Hydra is a BB(2,5) Cryptid. Similarly to Antihydra, it simulates repeatedly applying the function , but starting at and swapping the roles of the even and odd terms of this sequence. The obstacles to proving whether or not this Turing machine halts are equally as serious as that machine.
Description

Hydra basically tracks the progress of the integer ordered pair starting at , which is represented on the tape as consecutive s and to the right, consecutive s. As time passes, the head moves back and forth, replacing those s with s, two at a time. Because the head visits a new cell on the left every time this happens, the number of s on the tape is approximately when this process finishes. From here, most of those s are swiftly turned back into s, generating a new ordered pair. However, there are two ways this could happen. If was even, then will decrease by one or halt Hydra if it drops below 0. Otherwise, will increase by 2. The problem of whether or not Hydra halts is unsolved, and can be restated like so:
If the quantities of even and odd numbers found are counted as the function
Attributions
Hydra and its high-level rules were first reported on Discord by Daniel Yuan on 20 April 2024.
Analysis
Let . Then,[1]
Consider the partial configuration . After 14 steps this configuration becomes . We note the following shift rule:
- If , then in steps we arrive at . The matching complete configuration is , which in four steps becomes If then we have reached the undefined
A2
transition in steps total. Otherwise, continuing for three steps gives us . Another shift rule is required here:This means the configuration becomes in steps, and , equal to , one step later. This gives a total of steps. - If , then in steps we arrive at . The matching complete configuration is , which in four steps becomes , and then in steps. After 14 steps, we see the configuration , which turns into in steps. In two steps we get , followed by after more steps. We conclude with , equal to , one step later. This gives a total of steps.
The information above can be summarized as
Trajectory
It takes 20 steps to reach the configuration , and from there, the Collatz-like rules are repeatedly applied. Simulating Hydra has shown that after 4000000 rule steps, we have . Here are the first few:
To view an animation of the blank tape becoming in 572 steps, click here.
References
- ↑ S. Ligocki, "BB(2, 5) is Hard (Hydra) (2024). Accessed 22 July 2024.
- ↑ S. Ligocki, "BB(6) is Hard (Antihydra)" (2024). Accessed 22 July 2024.