Hydra function: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
MrSolis (talk | contribs)
mNo edit summary
MrSolis (talk | contribs)
Added Hydra function rules for Hydra and Antihydra with step counts
Line 22: Line 22:
C(2a+1,b)&\xrightarrow{4b+6a^2+23a+26}&C(3a+3,b+2).\\\hline
C(2a+1,b)&\xrightarrow{4b+6a^2+23a+26}&C(3a+3,b+2).\\\hline
\end{array}</math>
\end{array}</math>
|<math>A(a,b):=0^\infty\;1^a\;0\;1^b\;\textrm{E>}\;0^\infty</math>:<math display="block">\begin{array}{|lll|}\hline
|Let <math>A(a,b):=0^\infty\;1^a\;0\;1^b\;\textrm{E>}\;0^\infty</math>:<math display="block">\begin{array}{|lll|}\hline
0^\infty\;\textrm{A>}\;0^\infty&\xrightarrow{11}&A(0,4),\\
0^\infty\;\textrm{A>}\;0^\infty&\xrightarrow{11}&A(0,4),\\
A(a,2b)& \xrightarrow{2a+3b^2+12b+11}& A(a+2,3b+2),\\
A(a,2b)& \xrightarrow{2a+3b^2+12b+11}& A(a+2,3b+2),\\
Line 57: Line 57:
|<math display="block">b_0=8,b_{n+1}=\begin{cases}\frac{3b_n}{2}&\text{if }b_n\equiv0\pmod{2}\\\frac{3b_n-1}{2}&\text{if }b_n\equiv1\pmod{2}\end{cases}</math>
|<math display="block">b_0=8,b_{n+1}=\begin{cases}\frac{3b_n}{2}&\text{if }b_n\equiv0\pmod{2}\\\frac{3b_n-1}{2}&\text{if }b_n\equiv1\pmod{2}\end{cases}</math>
|}
|}
 
Now that we have demonstrated the relatedness between the behaviour of both [[Turing machines]], we can return to using the high-level rules. Once we do this, the result is:
{|class="wikitable"
! Hydra !! Antihydra
|-align="center"
|Let <math>C(a,b):=0^\infty\;\textrm{<A}\;2\;0^{3(a-2)}\;3^b\;2\;0^\infty</math>:<math display="block">\begin{array}{|lll|}\hline
0^\infty\;\textrm{A>}\;0^\infty&\xrightarrow{20}&C(3,0),\\
C(2a,0)&\xrightarrow{54a^2-48a-2}&0^\infty\;3^{9a-8}\;1\;\textrm{A>}\;2\;0^\infty,\\
C(2a,b+1)&\xrightarrow{54a^2-39a-5}&C(3a,b),\\
C(2a+1,b)&\xrightarrow{4b+54a^2-3a+4}&C(3a+1,b+2).\\\hline
\end{array}</math>
|<math>A(a,b):=0^\infty\;1^a\;0\;1^{b-4}\;\textrm{E>}\;0^\infty</math>:<math display="block">\begin{array}{|lll|}\hline
0^\infty\;\textrm{A>}\;0^\infty&\xrightarrow{11}&A(0,8),\\
A(a,2b)& \xrightarrow{2a+3b^2-1}& A(a+2,3b),\\
A(0,2b+1)&\xrightarrow{3b^2-3b-7}& 0^\infty\;\textrm{<F}\;110\;1^{3b-6}\;0^\infty,\\
A(a+1,2b+1)&\xrightarrow{3b^2-7}& A(a,3b+1).\\\hline
\end{array}</math>
|}
==Properties==
==Properties==
Here, <math>s</math> and <math>t</math> are positive integers with <math>t</math> odd. Let <math>0\le k\le s</math> be an integer and <math>H^k</math> is the <math>k</math>th iterate of <math>H</math>.
Here, <math>s</math> and <math>t</math> are positive integers with <math>t</math> odd. Let <math>0\le k\le s</math> be an integer and <math>H^k</math> is the <math>k</math>th iterate of <math>H</math>.

Revision as of 01:07, 4 March 2025

A bitmap depiction of 255 iterations of the Hydra function, starting with 3 at the top.

The Hydra function is a Collatz-like function whose behavior is connected to the unsolved halting problems for the Cryptids Hydra and Antihydra. It is defined as: H(n)n+12n=32n={3n2if n0(mod2)3n12if n1(mod2) which can alternatively be written as H(2n)=3nH(2n+1)=3n+1 It has some connections to Mahler's 3/2 problem.

Relationship to Hydra and Antihydra

Recall the high-level rules for Hydra and Antihydra:

Hydra Antihydra
Let C(a,b):=0<A20a3b20:0A>020C(3,0),C(2a,0)6a2+20a+4033a+11A>20,C(2a,b+1)6a2+23a+10C(3a+3,b),C(2a+1,b)4b+6a2+23a+26C(3a+3,b+2). Let A(a,b):=01a01bE>0:0A>011A(0,4),A(a,2b)2a+3b2+12b+11A(a+2,3b+2),A(0,2b+1)3b2+9b10<F11013b0,A(a+1,2b+1)3b2+12b+5A(a,3b+3).

Already, both machines can be observed to have very similar functions. Both have one parameter that increases exponentially with growth factor 32, and another that takes a pseudo-random walk that depends on the parity of the other variable. This relationship can be strengthened through a change of variables. This is easier to illustrate if these rules were written in the form of integer sequences:

Hydra Antihydra
a0=3,an+1={3an+62if an0(mod2)3an+32if an1(mod2) a0=4,an+1={3an+42if an0(mod2)3an+32if an1(mod2)

Now, we will introduce a new integer sequence based on the old one and discover the recursive rules for that sequence. For Hydra, this new sequence is bn=13an+2. For Antihydra, this new sequence is bn=an+4. The new rules are found by using bn+1 instead and substituting an+1 for its recursive formula. By doing so, we get:

Hydra Antihydra
b0=3,bn+1={an+62if an0(mod2)an+52if an1(mod2) b0=8,bn+1={3an+122if an0(mod2)3an+112if an1(mod2)

After that, we must substitute an for its solution in terms of bn. What results is the following:

Hydra Antihydra
b0=3,bn+1={3(bn2)+62if 3(bn2)0(mod2)3(bn2)+52if 3(bn2)1(mod2) b0=8,bn+1={3(bn4)+122if bn40(mod2)3(bn4)+112if bn41(mod2)

We finish by noting that the if statements simplify to simply checking if bn is even or odd. After simplifying, we get

Hydra Antihydra
b0=3,bn+1={3bn2if bn0(mod2)3bn12if bn1(mod2) b0=8,bn+1={3bn2if bn0(mod2)3bn12if bn1(mod2)

Now that we have demonstrated the relatedness between the behaviour of both Turing machines, we can return to using the high-level rules. Once we do this, the result is:

Hydra Antihydra
Let C(a,b):=0<A203(a2)3b20:0A>020C(3,0),C(2a,0)54a248a2039a81A>20,C(2a,b+1)54a239a5C(3a,b),C(2a+1,b)4b+54a23a+4C(3a+1,b+2). A(a,b):=01a01b4E>0:0A>011A(0,8),A(a,2b)2a+3b21A(a+2,3b),A(0,2b+1)3b23b70<F11013b60,A(a+1,2b+1)3b27A(a,3b+1).

Properties

Here, s and t are positive integers with t odd. Let 0ks be an integer and Hk is the kth iterate of H. Hk(2st)=3k2sktHk(2st+1)=3k2skt+1