Hydra function: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
MrSolis (talk | contribs)
Expanded the article with new information; added an image based on the idea suggested in the talk page
MrSolis (talk | contribs)
Improved the article's presentation
Line 1: Line 1:
[[File:Hydra-function-bitmap-255iterations.svg|thumb|A bitmap depiction of 255 iterations of the Hydra function, starting with 3 at the top.]]
[[File:Hydra-function-bitmap-255iterations.svg|thumb|100px|A bitmap depiction of 255 iterations of the Hydra function, starting with 3 at the top.]]
The '''Hydra function''' is a [[Collatz-like]] function whose behavior is connected to the unsolved halting problems for the [[Cryptids]] [[Hydra]] and [[Antihydra]]. It is defined as:
The '''Hydra function''' is a [[Collatz-like]] function whose behavior is connected to the unsolved halting problems for the [[Cryptids]] [[Hydra]] and [[Antihydra]]. It is defined as:
<math display="block">\textstyle H(n)\equiv n+\left\lfloor\frac{1}{2}n\right\rfloor=\Big\lfloor\frac{3}{2}n\Big\rfloor=\begin{cases}
<math display="block">\textstyle H(n)\equiv n+\left\lfloor\frac{1}{2}n\right\rfloor=\Big\lfloor\frac{3}{2}n\Big\rfloor=\begin{cases}
Line 11: Line 11:
\end{array}</math>
\end{array}</math>
It has some connections to [[wikipedia:Mahler's_3/2_problem|Mahler's 3/2 problem]].
It has some connections to [[wikipedia:Mahler's_3/2_problem|Mahler's 3/2 problem]].
== Relationship to Hydra and Antihydra (improved)==
Recall the high-level rules for Hydra and Antihydra:
{|class="wikitable"
! Hydra !! Antihydra
|-align="center"
|Let <math>C(a,b):=0^\infty\;\textrm{<A}\;2\;0^a\;3^b\;2\;0^\infty</math>:<math display="block">\begin{array}{|lll|}\hline
0^\infty\;\textrm{A>}\;0^\infty&\xrightarrow{20}&C(3,0),\\
C(2a,0)&\xrightarrow{6a^2+20a+4}&0^\infty\;3^{3a+1}\;1\;\textrm{A>}\;2\;0^\infty,\\
C(2a,b+1)&\xrightarrow{6a^2+23a+10}&C(3a+3,b),\\
C(2a+1,b)&\xrightarrow{4b+6a^2+23a+26}&C(3a+3,b+2).\\\hline
\end{array}</math>
|<math>A(a,b):=0^\infty\;1^a\;0\;1^b\;\textrm{E>}\;0^\infty</math>:<math display="block">\begin{array}{|lll|}\hline
0^\infty\;\textrm{A>}\;0^\infty&\xrightarrow{11}&A(0,4),\\
A(a,2b)& \xrightarrow{2a+3b^2+12b+11}& A(a+2,3b+2),\\
A(0,2b+1)&\xrightarrow{3b^2+9b-1}& 0^\infty\;\textrm{<F}\;110\;1^{3b}\;0^\infty,\\
A(a+1,2b+1)&\xrightarrow{3b^2+12b+5}& A(a,3b+3).\\\hline
\end{array}</math>
|}
Already, both machines can be observed to have very similar functions. Both have one parameter that increases exponentially with growth factor <math display="inline">\frac{3}{2}</math>, and another that takes a pseudo-random walk that depends on the parity of the other variable. This relationship can be strengthened through a change of variables. This is easier to illustrate if these rules were written in the form of integer sequences:
{|class="wikitable"
! Hydra !! Antihydra
|-align="center"
|<math display="block">a_0=3,a_{n+1}=\begin{cases}\frac{3a_n+6}{2}&\text{if }a_n\equiv0\pmod{2}\\\frac{3a_n+3}{2}&\text{if }a_n\equiv1\pmod{2}\end{cases}</math>
|<math display="block">a_0=4,a_{n+1}=\begin{cases}\frac{3a_n+4}{2}&\text{if }a_n\equiv0\pmod{2}\\\frac{3a_n+3}{2}&\text{if }a_n\equiv1\pmod{2}\end{cases}</math>
|}
Now, we will introduce a new integer sequence based on the old one and discover the recursive rules for that sequence. For Hydra, this new sequence is <math display="inline">b_n=\frac{1}{3}a_n+2</math>. For Antihydra, this new sequence is <math>b_n=a_n+4</math>. The new rules are found by using <math>b_{n+1}</math> instead and substituting <math>a_{n+1}</math> for its recursive formula. By doing so, we get:
{|class="wikitable"
! Hydra !! Antihydra
|-align="center"
|<math display="block">b_0=3,b_{n+1}=\begin{cases}\frac{a_n+6}{2}&\text{if }a_n\equiv0\pmod{2}\\\frac{a_n+5}{2}&\text{if }a_n\equiv1\pmod{2}\end{cases}</math>
|<math display="block">b_0=8,b_{n+1}=\begin{cases}\frac{3a_n+12}{2}&\text{if }a_n\equiv0\pmod{2}\\\frac{3a_n+11}{2}&\text{if }a_n\equiv1\pmod{2}\end{cases}</math>
|}
After that, we must substitute <math>a_n</math> for its solution in terms of <math>b_n</math>. What results is the following:
{|class="wikitable"
! Hydra !! Antihydra
|-align="center"
|<math display="block">b_0=3,b_{n+1}=\begin{cases}\frac{3(b_n-2)+6}{2}&\text{if }3(b_n-2)\equiv0\pmod{2}\\\frac{3(b_n-2)+5}{2}&\text{if }3(b_n-2)\equiv1\pmod{2}\end{cases}</math>
|<math display="block">b_0=8,b_{n+1}=\begin{cases}\frac{3(b_n-4)+12}{2}&\text{if }b_n-4\equiv0\pmod{2}\\\frac{3(b_n-4)+11}{2}&\text{if }b_n-4\equiv1\pmod{2}\end{cases}</math>
|}
We finish by noting that the if statements simplify to simply checking if <math>b_n</math> is even or odd. After simplifying, we get
{|class="wikitable"
! Hydra !! Antihydra
|-align="center"
|<math display="block">b_0=3,b_{n+1}=\begin{cases}\frac{3b_n}{2}&\text{if }b_n\equiv0\pmod{2}\\\frac{3b_n-1}{2}&\text{if }b_n\equiv1\pmod{2}\end{cases}</math>
|<math display="block">b_0=8,b_{n+1}=\begin{cases}\frac{3b_n}{2}&\text{if }b_n\equiv0\pmod{2}\\\frac{3b_n-1}{2}&\text{if }b_n\equiv1\pmod{2}\end{cases}</math>
|}
==Properties==
==Properties==
Here, <math>s</math> and <math>t</math> are positive integers with <math>t</math> odd. Let <math>0\le k\le s</math> be an integer and <math>H^k</math> is the <math>k</math>th iterate of <math>H</math>.
Here, <math>s</math> and <math>t</math> are positive integers with <math>t</math> odd. Let <math>0\le k\le s</math> be an integer and <math>H^k</math> is the <math>k</math>th iterate of <math>H</math>.
Line 17: Line 63:
   H^k(2^s t+1)  & = & 3^k2^{s-k}t+1 \\
   H^k(2^s t+1)  & = & 3^k2^{s-k}t+1 \\
\end{array}</math>
\end{array}</math>
==Relationship to Hydra and Antihydra==
Both machines effectively track the progress of two variables; one of them changes depending on its value modulo 2 but roughly multiplies itself by <math>\frac{3}{2}</math>, and the other increases by 2 or decreases by 1 depending on the parity of the first variable.
In particular, Hydra halts if and only if the sequence
<math display="block">a(n+1)=\begin{cases}\frac{3\times a(n)+6}{2}&\text{if }a(n)\equiv0\pmod{2}\\\frac{3\times a(n)+3}{2}&\text{if }a(n)\equiv1\pmod{2}\end{cases}</math>
ever has more even terms than twice the number of odd terms, starting with <math>a(0)=3</math>. Similarly, Antihydra halts if and only if the sequence
<math display="block">a(n+1)=\begin{cases}\frac{3\times a(n)+4}{2}&\text{if }a(n)\equiv0\pmod{2}\\\frac{3\times a(n)+3}{2}&\text{if }a(n)\equiv1\pmod{2}\end{cases}</math>
ever has more odd terms than twice the number of even terms, starting with <math>a(0)=4</math>.
For Hydra, we can introduce the sequence <math>b(n)=\frac{1}{3}a(n)+2</math> whose terms have the same sequence of parities as <math>a(n)</math>. Then we have:
<math display="block">\begin{array}{l}
  b(n+1)& = & \frac{1}{3}a(n+1)+2 \\
  b(n+1)& = &2+\frac{1}{3}\begin{cases}\frac{3\times a(n)+6}{2}&\text{if }a(n)\equiv0\pmod{2}\\\frac{3\times a(n)+3}{2}&\text{if }a(n)\equiv1\pmod{2}\end{cases}\\
b(n+1)&=&\begin{cases}\frac{a(n)+6}{2}&\text{if }a(n)\equiv0\pmod{2}\\\frac{a(n)+5}{2}&\text{if }a(n)\equiv1\pmod{2}\end{cases}\\
b(n+1)&=&\begin{cases}\frac{3(b(n)-2)+6}{2}&\text{if }3(b(n)-2)\equiv0\pmod{2}\\\frac{3(b(n)-2)+5}{2}&\text{if }3(b(n)-2)\equiv1\pmod{2}\end{cases}\\
b(n+1)&=&\begin{cases}\frac{3b(n)}{2}&\text{if }b(n)\equiv0\pmod{2}\\\frac{3b(n)-1}{2}&\text{if }b(n)\equiv1\pmod{2}\end{cases}\\
\end{array}</math>
For Antihydra, we can repeat this but with the sequence <math>b(n)=a(n)+4</math>.

Revision as of 00:02, 4 March 2025

A bitmap depiction of 255 iterations of the Hydra function, starting with 3 at the top.

The Hydra function is a Collatz-like function whose behavior is connected to the unsolved halting problems for the Cryptids Hydra and Antihydra. It is defined as: H(n)n+12n=32n={3n2if n0(mod2)3n12if n1(mod2) which can alternatively be written as H(2n)=3nH(2n+1)=3n+1 It has some connections to Mahler's 3/2 problem.

Relationship to Hydra and Antihydra (improved)

Recall the high-level rules for Hydra and Antihydra:

Hydra Antihydra
Let C(a,b):=0<A20a3b20:0A>020C(3,0),C(2a,0)6a2+20a+4033a+11A>20,C(2a,b+1)6a2+23a+10C(3a+3,b),C(2a+1,b)4b+6a2+23a+26C(3a+3,b+2). A(a,b):=01a01bE>0:0A>011A(0,4),A(a,2b)2a+3b2+12b+11A(a+2,3b+2),A(0,2b+1)3b2+9b10<F11013b0,A(a+1,2b+1)3b2+12b+5A(a,3b+3).

Already, both machines can be observed to have very similar functions. Both have one parameter that increases exponentially with growth factor 32, and another that takes a pseudo-random walk that depends on the parity of the other variable. This relationship can be strengthened through a change of variables. This is easier to illustrate if these rules were written in the form of integer sequences:

Hydra Antihydra
a0=3,an+1={3an+62if an0(mod2)3an+32if an1(mod2) a0=4,an+1={3an+42if an0(mod2)3an+32if an1(mod2)

Now, we will introduce a new integer sequence based on the old one and discover the recursive rules for that sequence. For Hydra, this new sequence is bn=13an+2. For Antihydra, this new sequence is bn=an+4. The new rules are found by using bn+1 instead and substituting an+1 for its recursive formula. By doing so, we get:

Hydra Antihydra
b0=3,bn+1={an+62if an0(mod2)an+52if an1(mod2) b0=8,bn+1={3an+122if an0(mod2)3an+112if an1(mod2)

After that, we must substitute an for its solution in terms of bn. What results is the following:

Hydra Antihydra
b0=3,bn+1={3(bn2)+62if 3(bn2)0(mod2)3(bn2)+52if 3(bn2)1(mod2) b0=8,bn+1={3(bn4)+122if bn40(mod2)3(bn4)+112if bn41(mod2)

We finish by noting that the if statements simplify to simply checking if bn is even or odd. After simplifying, we get

Hydra Antihydra
b0=3,bn+1={3bn2if bn0(mod2)3bn12if bn1(mod2) b0=8,bn+1={3bn2if bn0(mod2)3bn12if bn1(mod2)

Properties

Here, s and t are positive integers with t odd. Let 0ks be an integer and Hk is the kth iterate of H. Hk(2st)=3k2sktHk(2st+1)=3k2skt+1