User:MrSolis/Playground: Difference between revisions
m (MrSolis moved page User:MrSolis/BB5ChampRM to User:MrSolis/Playground) |
No edit summary |
||
Line 1: | Line 1: | ||
'''HYDRA PAGE REVAMP (WIP)''' | |||
{{machine|1RB3RB---3LA1RA_2LA3RA4LB0LB0LA}}{{unsolved|Does Hydra run forever?}}{{TM|1RB3RB---3LA1RA_2LA3RA4LB0LB0LA|undecided}} | |||
Hydra is a [[BB(2,5)]] [[Cryptid]]. It simulates computing the terms of the sequence | |||
<math display="block>H_{n+1}=\bigg\lfloor\frac{3}{2}H_n\bigg\rfloor,H_0=3,</math> | |||
halting if and only if there exists a point in the sequence where the number of even terms up to that point exceeds twice the number of odd terms. | |||
== Analysis == | |||
===Rules=== | |||
Let <math>C(a,b):=0^\infty\;\textrm{<A}\;2\;0^a\;3^b\;2\;0^\infty</math>. Then, | |||
<math display="block">\begin{array}{|lll|}\hline | |||
C(2a,0)&\xrightarrow{6a^2+20a+4}&0^\infty\;3^{3a+1}\;1\;\textrm{A>}\;2\;0^\infty,\\ | |||
C(2a,b+1)&\xrightarrow{6a^2+23a+10}&C(3a+3,b),\\ | |||
C(2a+1,b)&\xrightarrow{4b+6a^2+23a+26}&C(3a+3,b+2).\\\hline | |||
\end{array}</math> | |||
By scaling and translating these rules we acquire the [[Hydra function]] that relates it to [[Antihydra]]. | |||
===Proof=== | |||
Consider the partial configuration <math>P(m,n):=0^\infty\;3^m\;\textrm{A>}\;02\;0^n</math>. After 14 steps this configuration becomes | |||
<math>0^\infty\;3^{m+3}\;\textrm{<A}\;2\;0^{n-2}</math>. We note the following shift rule: | |||
<math display="block">\begin{array}{|c|}\hline3^s\;\textrm{<A}\xrightarrow{s}\textrm{<A}\;3^s\\\hline\end{array}</math> | |||
Using this shift rule, we get <math>0^\infty\;\textrm{<A}\;3^{m+3}\;2\;0^{n-2}</math> in <math>m+3</math> steps. From here, we can observe that <math>\textrm{A>}\;0\;3^s</math> turns into <math>3\;\textrm{A>}\;0\;3^{s-1}</math> in three steps if <math>s\ge 1</math>. By repeating this process, we acquire this rule: | |||
<math display="block">\begin{array}{|c|}\hline\textrm{A>}\;0\;3^s\xrightarrow{3s}3^s\;\textrm{A>}\;0\\\hline\end{array}</math> | |||
With this rule, it takes <math>3m+9</math> steps to reach the configuration <math>0^\infty\;3^{m+3}\;\textrm{A>}\;02\;0^{n-2}</math>, which is the same configuration as <math>P(m+3,n-2)</math>. To summarize: | |||
<math display="block">\begin{array}{|c|}\hline P(m,n)\xrightarrow{4m+26}P(m+3,n-2)\text{ if }n\ge 2.\\\hline\end{array}</math> | |||
With <math>C(a,b)</math> we have <math>P(0,a)</math>. As a result, we can apply this rule <math display="inline">\big\lfloor\frac{1}{2}a\big\rfloor</math> times, which creates two possible scenarios: | |||
#If <math>a\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(a/2)-1}(4\times 3i+26)=\textstyle\frac{3}{2}a^2+10a</math> steps we arrive at <math display="inline">P\Big(\frac{3}{2}a,0\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3/2)a}\;\textrm{A>}\;02\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{1+(3/2)a}\;1\;\textrm{A>}\;3^b\;2\;0^\infty.</math> If <math>b=0</math> then we have reached the undefined <code>A2</code> transition in <math display="inline">\frac{3}{2}a^2+10a+4</math> steps total. Otherwise, continuing for three steps gives us <math>0^\infty\;3^{2+(3/2)a}\;\textrm{<B}\;0\;3^{b-1}\;2\;0^\infty</math>. Another shift rule is required here:<math display="block">\begin{array}{|c|}\hline3^s\;\textrm{<B}\xrightarrow{s}\textrm{<B}\;0^s\\\hline\end{array}</math>This means the configuration becomes <math>0^\infty\;\textrm{<B}\;0^{3+(3/2)a}\;3^{b-1}\;2\;0^\infty</math> in <math display="inline">\frac{3}{2}a+2</math> steps, and <math>0^\infty\;\textrm{<A}\;2\;0^{3+(3/2)a}\;3^{b-1}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3}{2}a+3,b-1\Big)</math>, one step later. This gives a total of <math display="inline">\frac{3}{2}a^2+\frac{23}{2}a+10</math> steps. | |||
#If <math>a\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{2}a^2+7a-\frac{17}{2}</math> steps we arrive at <math display="inline">P\Big(\frac{3a-3}{2},1\Big)</math>. The matching complete configuration is <math>0^\infty\;3^{(3a-3)/2}\;\textrm{A>}\;020\;3^b\;2\;0^\infty</math>, which in four steps becomes <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{A>}\;0\;3^b\;2\;0^\infty</math>, and then <math>0^\infty\;3^{(3a-1)/2}\;1\;3^b\;\textrm{A>}\;02\;0^\infty</math> in <math>3b</math> steps. After 14 steps, we see the configuration <math>0^\infty\;3^{(3a-1)/2}\;1\;3^{b+3}\;\textrm{<A}\;2\;0^\infty</math>, which turns into <math>0^\infty\;3^{(3a-1)/2}\;1\;\textrm{<A}\;3^{b+3}\;2\;0^\infty</math> in <math>b+3</math> steps. In two steps we get <math>0^\infty\;3^{(3a+1)/2}\;\textrm{<B}\;0\;3^{b+2}\;2\;0^\infty</math>, followed by <math>0^\infty\;\textrm{<B}\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math> after another <math display="inline">\frac{3a+1}{2}</math> steps. We conclude with <math>0^\infty\;\textrm{<A}\;2\;0^{(3a+3)/2}\;3^{b+2}\;2\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{3a+3}{2},b+2\Big)</math>, one step later. This gives a total of <math display="inline">4b+\frac{3}{2}a^2+\frac{17}{2}a+16</math> steps. | |||
The information above can be summarized as | |||
<math display="block">C(a,b)\rightarrow\begin{cases}0^\infty\;3^{(3/2)a+1}\;1\;\textrm{A>}\;2\;0^\infty&\text{if }a\equiv0\pmod{2}\text{ and }b=0,\\C\Big(\frac{3}{2}a+3,b-1\Big)&\text{if }a\equiv0\pmod{2}\text{ and }b>0,\\C\Big(\frac{3a+3}{2},b+2\Big)&\text{if }a\equiv1\pmod2.\end{cases}</math> | |||
Substituting <math>a\leftarrow 2a</math> for the first two cases and <math>a\leftarrow 2a+1</math> for the third yields the final result. | |||
== Trajectory == | |||
It takes 20 steps to reach the configuration <math>C(3,0)</math>, and from there, the [[Collatz-like]] rules are repeatedly applied. Here are the first few iterations: | |||
<math display="block">\begin{array}{|c|}\hline0^\infty\;\textrm{A>}\;0^\infty\xrightarrow{20}C(3,0)\xrightarrow{55}C(6,2)\xrightarrow{133}C(12,1)\xrightarrow{364}C(21,0)\xrightarrow{856}C(33,2)\xrightarrow{1938}C(51,4)\rightarrow\cdots\\\hline\end{array}</math> | |||
After 60 million rule steps, there are 29995836 even values of <math>a</math> and 30004165 odd values, giving a very high <math>b</math> value. However, this does not sufficiently prove that Hydra does not halt. | |||
===A probabilistic nonhalting argument=== | |||
The trajectory of <math>b</math> values can be approximated by a random walk, where the walker can only move in step sizes +2 or -1 with equal probability, starting at position 0. The expected position of the walker after <math>k</math> steps is <math display="inline">\frac{1}{2}k</math>, and it can be shown that the probability of the walker reaching position -1 from position <math>n</math> is <math display="inline">{\Big(\frac{\sqrt{5}-1}{2}\Big)}^{n+1}</math>. | |||
<div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content"> | |||
Let <math>P(n)</math> denote the probability of the random walker reaching position 0 from position <math>n</math>. If the walker reaches position 0, it will do so either by first moving +2 with probability <math display="inline">\frac{1}{2}</math> or first moving -1 with probability <math display="inline">\frac{1}{2}</math>. Therefore, the recurrence relation is | |||
<math display="block">\textstyle P(n)=\frac{1}{2}P(n+2)+\frac{1}{2}P(n-1)\text{ for }n\ge1.</math> | |||
Bringing all terms with <math>P</math> to the left side of the equation and then substituting <math>n\leftarrow n+1</math> gives | |||
<math display="block">\textstyle P(n+1)-\frac{1}{2}P(n+3)-\frac{1}{2}P(n)=0.</math> | |||
This equation has the form <math>\sum_{i=0}^k a_iP(n+i)=0</math>, which can be solved using the characteristic polynomial <math>f(z)=\sum_{i=0}^k a_iz^i</math>. In this instance we get <math display="inline">f(z)=-\frac{1}{2}+z-\frac{1}{2}z^3</math>, whose solutions are given by | |||
<math display="block">\textstyle z_0=\frac{\sqrt{5}-1}{2},\qquad\qquad z_1=1,\qquad\qquad z_2=-\frac{1+\sqrt{5}}{2}.</math> | |||
For each real root <math>z_i</math> with multiplicity 1, its fundamental solution is <math>c_i{\left(z_i\right)}^n</math>, and combining these fundamental solutions produces the general solution. Therefore, | |||
<math display="block">\textstyle P(n)=c_0{\left(\frac{\sqrt{5}-1}{2}\right)}^n+c_1+c_2{\left(-\frac{1+\sqrt{5}}{2}\right)}^n</math> | |||
The boundary condition <math>\lim_{n\to\infty} P(n)=0</math> means <math>c_2=0</math> (since <math display="inline">\left\vert-\frac{1+\sqrt{5}}{2}\right\vert > 1</math>) and <math>c_1=0</math>, and the boundary condition <math>P(0)=1</math> requires that <math>c_0=1</math>. | |||
Finally, we note that reaching position -1 from position <math>n</math>, the required condition for halting, is the same as reaching position 0 from position <math>n+1</math>, so we must increment <math>n</math>. | |||
</div></div> | |||
For these reasons, Hydra is considered to be a [[probviously]] nonhalting machine. |
Revision as of 00:42, 14 February 2025
HYDRA PAGE REVAMP (WIP)
1RB3RB---3LA1RA_2LA3RA4LB0LB0LA
(bbch)
Hydra is a BB(2,5) Cryptid. It simulates computing the terms of the sequence
Analysis
Rules
Let . Then,
Proof
Consider the partial configuration . After 14 steps this configuration becomes . We note the following shift rule:
- If , then in steps we arrive at . The matching complete configuration is , which in four steps becomes If then we have reached the undefined
A2
transition in steps total. Otherwise, continuing for three steps gives us . Another shift rule is required here:This means the configuration becomes in steps, and , equal to , one step later. This gives a total of steps. - If , then in steps we arrive at . The matching complete configuration is , which in four steps becomes , and then in steps. After 14 steps, we see the configuration , which turns into in steps. In two steps we get , followed by after another steps. We conclude with , equal to , one step later. This gives a total of steps.
The information above can be summarized as
Trajectory
It takes 20 steps to reach the configuration , and from there, the Collatz-like rules are repeatedly applied. Here are the first few iterations:
A probabilistic nonhalting argument
The trajectory of values can be approximated by a random walk, where the walker can only move in step sizes +2 or -1 with equal probability, starting at position 0. The expected position of the walker after steps is , and it can be shown that the probability of the walker reaching position -1 from position is .
Let denote the probability of the random walker reaching position 0 from position . If the walker reaches position 0, it will do so either by first moving +2 with probability or first moving -1 with probability . Therefore, the recurrence relation is
Finally, we note that reaching position -1 from position , the required condition for halting, is the same as reaching position 0 from position , so we must increment .
For these reasons, Hydra is considered to be a probviously nonhalting machine.