Antihydra: Difference between revisions
Jump to navigation
Jump to search
(Refactor page completely.) |
No edit summary Tag: Reverted |
||
Line 1: | Line 1: | ||
{{machine|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA}}{{unsolved|Does Antihydra run forever?}} | {{machine|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA}}{{unsolved|Does Antihydra run forever?}}{{TM|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA|undecided}} | ||
[[File:Antihydra-depiction.png|right|thumb|Artistic depiction of Antihydra by Jadeix]] | [[File:Antihydra-depiction.png|right|thumb|Artistic depiction of Antihydra by Jadeix]] | ||
'''Antihydra''' | '''Antihydra''' is a [[BB(6)]] [[Cryptid]]. It is similar to [[Hydra]] in that it halts if and only if the sequence | ||
<math display="block">H_{n+1}=\bigg\lfloor\frac{3}{2}H_n\bigg\rfloor,H_0=8,</math> | |||
ever has a cumulative count of odd terms that surpasses twice the cumulative count of even terms. | |||
<math display="block"> | |||
== Analysis == | == Analysis == | ||
Let <math>A(a | ===Rules=== | ||
Let <math>A(a,b):=0^\infty\;1^a\;0\;1^b\;\textrm{E>}\;0^\infty</math>. Then<ref name="bl">S. Ligocki, "[https://www.sligocki.com/2024/07/06/bb-6-2-is-hard.html BB(6) is Hard (Antihydra)]" (2024). Accessed 22 July 2024.</ref>, | |||
<math display="block">\begin{array}{ | <math display="block">\begin{array}{|lll|}\hline | ||
A(a,2b)& \xrightarrow{2a+3b^2+12b+11}& A(a+2,3b+2),\\ | |||
A(0,2b+1)&\xrightarrow{3b^2+9b-1}& 0^\infty\;\textrm{<F}\;110\;1^{3b}\;0^\infty,\\ | |||
A(a+1,2b+1)&\xrightarrow{3b^2+12b+5}& A(a,3b+3).\\\hline | |||
\end{array}</math> | |||
\end{array}</math> | ===Proof=== | ||
Consider the partial configuration <math>P(m,n):=0\;1^m\;\textrm{E>}\;0\;1^n\;0^\infty</math>. The configuration after two steps is <math>0\;1^{m-1}\;0\;\textrm{A>}\;1^{n+1}\;0^\infty</math>. We note the following shift rule: | |||
<math display="block"> | <math display="block">\begin{array}{|c|}\hline\textrm{A>}\;1^s\xrightarrow{s}1^s\;\textrm{A>}\\\hline\end{array}</math> | ||
As a result, we get <math>0\;1^{m-1}\;0\;1^{n+1}\;\textrm{A>}\;0^\infty</math> after <math>n+1</math> steps. Advancing two steps produces <math>0\;1^{m-1}\;0\;1^{n+2}\;\textrm{<C}\;0^\infty</math>. A second shift rule is useful here: | |||
<math display="block">\begin{array}{|c|}\hline1^s\;\textrm{<C}\xrightarrow{s}\textrm{<C}\;1^s\\\hline\end{array}</math> | |||
\end{ | This allows us to reach <math>0\;1^{m-1}\;0\;\textrm{<C}\;1^{n+2}\;0^\infty</math> in <math>n+2</math> steps. Moving five more steps gets us to <math>0\;1^{m-2}\;\textrm{E>}\;0\;1^{n+3}\;0^\infty</math>, which is the same configuration as <math>P(m-2,n+3)</math>. Accounting for the head movement creates the condition that <math>m\ge 4</math>. In summary: | ||
<math display="block">\begin{array}{|c|}\hline P(m,n)\xrightarrow{2n+12}P(m-2,n+3)\text{ if }m\ge 4.\\\hline\end{array}</math> | |||
With <math>A(a,b)</math> we have <math>P(b,0)</math>. As a result, we can apply this rule <math display="inline>\big\lfloor\frac{1}{2}b\big\rfloor-1</math> times (assuming <math>b\ge 4</math>), which creates two possible scenarios: | |||
#If <math>b\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(b/2)-2}(2\times 3i+12)=\textstyle\frac{3}{4}b^2+\frac{3}{2}b-6</math> steps we arrive at <math display="inline">P\Big(2,\frac{3}{2}b-3\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;011\;\textrm{E>}\;0\;1^{(3b)/2-3}\;0^\infty</math>. After <math>3b+4</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<C}\;00\;1^{(3b)/2}\;0^\infty</math>, which then leads to <math>0^\infty\;\textrm{<C}\;1^a\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a</math> steps. After five more steps, we reach <math>0^\infty\;1\;\textrm{E>}\;1^{a+2}\;00\;1^{(3b)/2}\;0^\infty</math>, from which another shift rule must be applied:<math display="block">\begin{array}{|c|}\hline\textrm{E>}\;1^s\xrightarrow{s}1^s\;\textrm{E>}\\\hline\end{array}</math>Doing so allows us to get the configuration <math>0^\infty\;1^{a+3}\;\textrm{E>}\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a+2</math> steps. In six steps we have <math>0^\infty\;1^{a+2}\;011\;\textrm{E>}\;1^{(3b)/2}\;0^\infty</math>, so we use the shift rule again, ending at <math>0^\infty\;1^{a+2}\;0\;1^{(3b)/2+2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a+2,\frac{3}{2}b+2\Big)</math>, <math display="inline">\frac{3}{2}b</math> steps later. This gives a total of <math display="inline">2a+\frac{3}{4}b^2+6b+11</math> steps. | |||
== | #If <math>b\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{4}b^2-\frac{27}{4}</math> steps we arrive at <math display="inline">P\Big(3,\frac{3b-9}{2}\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;0111\;\textrm{E>}\;0\;1^{(3b-9)/2}\;0^\infty</math>. After <math>3b+2</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty</math>. If <math>a=0</math> then we have reached the undefined <code>F0</code> transition with a total of <math display="inline">\frac{3}{4}b^2+3b-\frac{19}{4}</math> steps. Otherwise, continuing for six steps gives us <math>0^\infty\;1^{a-1}\;0111\;\textrm{E>}\;1^{(3b-3)/2}\;0^\infty</math>. We conclude with the configuration <math>0^\infty\;1^{a-1}\;0\;1^{(3b+3)/2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a-1,\frac{3b+3}{2}\Big)</math>, in <math display="inline">\frac{3b-3}{2}</math> steps. This gives a total of <math display="inline">\frac{3}{4}b^2+\frac{9}{2}b-\frac{1}{4}</math> steps. | ||
If | The information above can be summarized as | ||
<math display="block">A(a,b)\rightarrow\begin{cases}A\Big(a+2,\frac{3}{2}b+2\Big)&\text{if }b\ge 2,b\equiv0\pmod{2};\\0^\infty\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty&\text{if }b\ge3,b\equiv1\pmod{2},\text{ and }a=0;\\A\Big(a-1,\frac{3b+3}{2}\Big)&\text{if }b\ge3,b\equiv1\pmod{2},\text{ and }a>0.\end{cases}</math> | |||
Substituting <math>b\leftarrow 2b</math> for the first case and <math>b\leftarrow 2b+1</math> for the other two yields the final result. | |||
== Trajectory == | |||
11 steps are required to enter the configuration <math>A(0, 4)</math> before the [[Collatz-like]] rules are repeatedly applied. Here are the first few iterations: | |||
<math display="block">\ | [[File:AHydra 0-419.gif|right|thumb|Animation of the blank tape becoming <math>A(6,23)</math> in 419 steps (''[https://wiki.bbchallenge.org/w/images/3/36/AHydra_0-419.gif click to view]'').]] | ||
<math display="block">\begin{array}{|c|}\hline A(0,4)\xrightarrow{47}A(2,8)\xrightarrow{111}A(4,14)\xrightarrow{250}A(6,23)\xrightarrow{500}A(5,36)\xrightarrow{1209}A(7,56)\rightarrow\cdots\\\hline\end{array}</math> | |||
an extremely | The halting problems for Antihydra and Hydra are connected by the [[Hydra function]], so the heuristic argument that suggests Hydra is [[probviously]] nonhalting can be applied here. After <math>2^{31}</math> rule steps, we have <math>b=1073720884</math><ref name="bl"></ref>, so this machine, if treated as a random process, has an extremely minuscule chance of ever halting. | ||
==References== | |||
== | |||
[[Category:Individual machines]] | [[Category:Individual machines]] | ||
[[Category:Cryptids]] | [[Category:Cryptids]] |
Revision as of 00:56, 17 February 2025
1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA
(bbch)

Antihydra is a BB(6) Cryptid. It is similar to Hydra in that it halts if and only if the sequence
ever has a cumulative count of odd terms that surpasses twice the cumulative count of even terms.
Analysis
Rules
Let . Then[1],
Proof
Consider the partial configuration . The configuration after two steps is . We note the following shift rule:
As a result, we get after steps. Advancing two steps produces . A second shift rule is useful here:
This allows us to reach in steps. Moving five more steps gets us to , which is the same configuration as . Accounting for the head movement creates the condition that . In summary:
With we have . As a result, we can apply this rule times (assuming ), which creates two possible scenarios:
- If , then in steps we arrive at . The matching complete configuration is . After steps this becomes , which then leads to in steps. After five more steps, we reach , from which another shift rule must be applied:Doing so allows us to get the configuration in steps. In six steps we have , so we use the shift rule again, ending at , equal to , steps later. This gives a total of steps.
- If , then in steps we arrive at . The matching complete configuration is . After steps this becomes . If then we have reached the undefined
F0
transition with a total of steps. Otherwise, continuing for six steps gives us . We conclude with the configuration , equal to , in steps. This gives a total of steps.
The information above can be summarized as
Substituting for the first case and for the other two yields the final result.
Trajectory
11 steps are required to enter the configuration before the Collatz-like rules are repeatedly applied. Here are the first few iterations:

The halting problems for Antihydra and Hydra are connected by the Hydra function, so the heuristic argument that suggests Hydra is probviously nonhalting can be applied here. After rule steps, we have [1], so this machine, if treated as a random process, has an extremely minuscule chance of ever halting.
References
- ↑ 1.0 1.1 S. Ligocki, "BB(6) is Hard (Antihydra)" (2024). Accessed 22 July 2024.