User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Added path to rule 11)
(Added more rules)
Line 85: Line 85:
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
</pre>
</pre>
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
* Rule 10: A(a, b, c) --> <math>A(a,0,2^{b} \times c + 2^{b} \times 3 - 3)</math> which becomes <math>A(a,0,2^{b+1} \times 3 - 3)</math> if c = 3.
* Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)

Revision as of 17:12, 30 September 2025

Placeholder 1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD (bbch)

S is any tape configuration
1. S D> 2^a S --> S 2^a D> S
2. S B> 1^a S --> S 1^a B> S
3. S 1 B> 0 S --> S <A 1^2 S
4. S D> (11)^a S --> S (21)^a D> S
   S A> (11)^a S --> S (12)^a A> S
5. S (21)^a <C S --> S <C (11)^a S
   S (12)^a <A S --> S <A (11)^a S
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S

7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S
by:
S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 (12)^b 1 B> 0 S
--> S (12)^a 2 (12)^b <A (11) S 
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S
--> S (12)^a-1 2 A> (11)^b+2 S
--> S (12)^a-1 2 (12)^b+2 A> S

8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf
Obtained by repeating rule 8.

9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf
by:
S (12)^a <D (11)^b 0^inf
--> S (12)^a D> (11)^b 0^inf
--> S (12)^a (21)^b D> 0^inf
--> S (12)^a (21)^b 2 B> 0^inf
--> S (12)^a (21)^b 2 <B 2 0^inf
--> S (12)^a (21)^b <C 1 2 0^inf
--> S (12)^a <C (11)^b 1 2 0^inf
--> S (12)^a-1 1 <D (11)^b+1 2 0^inf
--> S (12)^a-1 2 A> (11)^b+1 2 0^inf
--> S (12)^a-1 2 (12)^b+1 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+1 <C 1 0^inf
--> S (12)^a-1 2 (12)^b 1 <D 11 0^inf
--> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf
--> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf
--> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf
--> S (12)^a-1 2^2 <A (11)^2b+2 0^inf
--> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf
--> S (12)^a-1 <D (11)^2b+3 0^inf

10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
Obtained by repeating rule 9.

11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
by:
S (11)^a <D (11)^b 0^inf
--> S (11)^a-1 1 2 A> (11)^b 0^inf
--> S (11)^a-1 (12)^b+1 A> 0^inf
--> S (11)^a-1 <A (11)^b+2 0^inf
--> S (11)^a-1 D> (11)^b+2 0^inf
--> S (11)^a-1 (21)^b+2 D> 0^inf
--> S (11)^a-1 (21)^b+2 2 B> 0^inf
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
Note that 1 (21)^k = (12)^k 1
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf

Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf

  • Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
  • Rule 10: A(a, b, c) --> which becomes if c = 3.
  • Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)