User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Line 31: Line 31:
                       → 0^∞ <A 212 55^(6*2^(n+3)-2) 52
                       → 0^∞ <A 212 55^(6*2^(n+3)-2) 52
                       → 0^∞ <A 212 22^(6*2^(n+4)-4) 52
                       → 0^∞ <A 212 22^(6*2^(n+4)-4) 52
Level 4
Let
f(n) = 6*2^(n+4)-4
Repeating Rule 3 we get the Tetration Rule:
0^∞ <A 212 22^n 52 5^5k → 0^∞ <A 212 22^f^k(n) 52
This rule will be the main contributor to the score since f^k(n) > 2^^k. In fact, this rule will apply 3 times, which is how we end up with 3 tetrations in the final score (>10^^10^^10^^3).
</pre>
</pre>
∞∞∞∞
∞∞∞∞
→→→→
→→→→

Revision as of 17:07, 23 September 2025

1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch) is the current BB(2,6) champion. It was discovered on the 19th of May 2023 by Pavel Kropitz. It halts with a score > .

Analysis by Shawn Ligocki

https://www.sligocki.com/2023/05/20/bb-2-6-p3.html

Analysis
Level 1
These rules can all be verified by direct simulation:
00 <A 212 22^n 55 → <A 212 22^n+2

00 <A 212 22^n 2 55 → <A 212 55^n+2 2

0^5 <A 212 22^n 52 5555 → <A 212 55 2 55^n+3 52
00 <A 212 22^n 2 52 5 → <A 212 55^n+2 52

Level 2
Repeating the first rule above we get:
0^∞ <A 212 22^n 55^k → 0^∞ 212 22^n+2k

which let's us prove Rule 2:
0^∞ <A 212 22^n 2 55 → 0^∞ <A 212 55^n+2 2
                     → 0^∞ <A 212 22^2n+4 2

Level 3
Repeating Rule 2 we get:
0^∞ <A 212 22^n 2 55^k → 0^∞ <A 212 22^(n+4)*((2^k)-4) 2

which let's us prove Rule 3:
0^∞ <A 212 22^n 52 5^5 → 0^∞ <A 212 55 2 55^n+3 52 5
                       → 0^∞ <A 212 22^2 2 55^n+3 52 5
                       → 0^∞ <A 212 22^(6*2^(n+3)-2) 52 5
                       → 0^∞ <A 212 55^(6*2^(n+3)-2) 52
                       → 0^∞ <A 212 22^(6*2^(n+4)-4) 52

Level 4
Let
f(n) = 6*2^(n+4)-4

Repeating Rule 3 we get the Tetration Rule:
0^∞ <A 212 22^n 52 5^5k → 0^∞ <A 212 22^f^k(n) 52

This rule will be the main contributor to the score since f^k(n) > 2^^k. In fact, this rule will apply 3 times, which is how we end up with 3 tetrations in the final score (>10^^10^^10^^3).

∞∞∞∞ →→→→