Bigfoot: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
MrSolis (talk | contribs)
No edit summary
MrSolis (talk | contribs)
No edit summary
Line 36: Line 36:
From this we know that Bigfoot's behaviour depends on the value of <math>b</math> modulo 12, and with <math>A'(a,b,c)</math> we have <math>P(b,c)</math>. The following shift rules will be useful:
From this we know that Bigfoot's behaviour depends on the value of <math>b</math> modulo 12, and with <math>A'(a,b,c)</math> we have <math>P(b,c)</math>. The following shift rules will be useful:
<math display="block">\begin{array}{|l|l|l|}\hline12^s\;\textrm{<A}\xrightarrow{2s}\textrm{<A}\;21^s&\textrm{B>}\;1^s\xrightarrow{s}1^s\;\textrm{B>}&\textrm{B>}\;2^s\xrightarrow{s}2^s\;\textrm{B>}\\\hline\end{array}</math>
<math display="block">\begin{array}{|l|l|l|}\hline12^s\;\textrm{<A}\xrightarrow{2s}\textrm{<A}\;21^s&\textrm{B>}\;1^s\xrightarrow{s}1^s\;\textrm{B>}&\textrm{B>}\;2^s\xrightarrow{s}2^s\;\textrm{B>}\\\hline\end{array}</math>
Because only even values of <math>b</math> are receiving focus, there remain six possible scenarios:
Only even values of <math>b</math> and <math>c</math> are relevant, so there remain six possible scenarios:
#If <math>b\equiv0\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{b/12-1}}(6(16i+c)+43+6(16i+11+c)+19)={\displaystyle\sum_{i=0}^{b/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+\frac{8}{3}b+bc</math> steps we arrive at <math display="inline">P\Big(0,16\times\frac{b}{12}+c\Big)</math>, or <math>0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty</math> when considering the complete configuration. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{1}0^\infty\;1\;\textrm{B>}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{2a+4b/3+c}\\0^\infty\;12^a\;1^{4b/3+c+1}\;\textrm{B>}\;0^\infty\xrightarrow{12}0^\infty\;12^a\;1^{4b/3+c-2}\;\textrm{<A}\;1^4\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4}{3}b+c\ge2</math>, then we will reach <math display="inline">A'\Big(a,\frac{4}{3}b+c-2,4\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+13</math> steps.
#If <math>b\equiv0\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{b/12-1}}(6(16i+c)+43+6(16i+11+c)+19)={\displaystyle\sum_{i=0}^{b/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+\frac{8}{3}b+bc</math> steps we arrive at <math display="inline">P\Big(0,16\times\frac{b}{12}+c\Big)</math>, or <math>0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty</math> when considering the complete configuration. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{1}0^\infty\;1\;\textrm{B>}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{2a+4b/3+c}\\0^\infty\;12^a\;1^{4b/3+c+1}\;\textrm{B>}\;0^\infty\xrightarrow{12}0^\infty\;12^a\;1^{4b/3+c-2}\;\textrm{<A}\;1^4\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4}{3}b+c\ge2</math>, then we will reach <math display="inline">A'\Big(a,\frac{4}{3}b+c-2,4\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+13</math> steps.
#If <math>b\equiv2\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{(b-2)/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+bc-2c-\frac{8}{3}</math> steps we arrive at <math display="inline">P\Big(2,\frac{4(b-2)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;11\;\textrm{<A}\;1^{(4b-2)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;11\;\textrm{<A}\;1^{4(b-2)/3+c}\;0^\infty\xrightarrow{4(b-2)/3+c+1}0^\infty\;12^a\;1\;2^{4(b-2)/3+c+1}\;\textrm{A>}\;0^\infty\xrightarrow{4}\\0^\infty\;12^a\;1\;2^{4(b-2)/3+c}\;\textrm{<C}\;122\;0^\infty\xrightarrow{4(b-2)/3+c}0^\infty\;12^a\;1\;\textrm{<C}\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;12^a\;\textrm{<A}\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;1\;\textrm{B>}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{4(b-2)/3+2a+c+4}0^\infty\;12^{a+1}\;1^{4(b-2)/3+c+1}\;22\;\textrm{B>}\;0^\infty\xrightarrow{18}\\0^\infty\;12^{a+1}\;1^{4(b-2)/3+c-2}\;\textrm{<A}\;1^6\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4(b-2)}{3}+c\ge 2</math>, then we will reach <math display="inline">A'\Big(a+1,\frac{4b-14}{3}+c,6\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+\frac{55}{3}</math> steps.
#If <math>b\equiv2\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{(b-2)/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+bc-2c-\frac{8}{3}</math> steps we arrive at <math display="inline">P\Big(2,\frac{4(b-2)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;11\;\textrm{<A}\;1^{(4b-2)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;11\;\textrm{<A}\;1^{4(b-2)/3+c}\;0^\infty\xrightarrow{4(b-2)/3+c+1}0^\infty\;12^a\;1\;2^{4(b-2)/3+c+1}\;\textrm{A>}\;0^\infty\xrightarrow{4}\\0^\infty\;12^a\;1\;2^{4(b-2)/3+c}\;\textrm{<C}\;122\;0^\infty\xrightarrow{4(b-2)/3+c}0^\infty\;12^a\;1\;\textrm{<C}\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;12^a\;\textrm{<A}\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;1\;\textrm{B>}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{4(b-2)/3+2a+c+4}0^\infty\;12^{a+1}\;1^{4(b-2)/3+c+1}\;22\;\textrm{B>}\;0^\infty\xrightarrow{18}\\0^\infty\;12^{a+1}\;1^{4(b-2)/3+c-2}\;\textrm{<A}\;1^6\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4(b-2)}{3}+c\ge 2</math>, then we will reach <math display="inline">A'\Big(a+1,\frac{4b-14}{3}+c,6\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+\frac{55}{3}</math> steps.
Line 47: Line 47:
Using the definitions of <math>A'</math> and <math>A</math> to transform these rules produces this:
Using the definitions of <math>A'</math> and <math>A</math> to transform these rules produces this:
<math display="block">A(a,b,c)\rightarrow\begin{cases}A\Big(a,\frac{4}{3}b+c-1,2\Big)&\text{if }b\equiv0\pmod{6}\text{ and }\frac{4}{3}b+c\ge1,\\A\Big(a+1,\frac{4b-7}{3}+c,3\Big)&\text{if }b\equiv1\pmod{6}\text{ and }\frac{4(b-1)}{3}+c\ge1,\\0^\infty\;\textrm{<C}\;1^{(8b-1)/3+2c}\;2\;0^\infty&\text{if }b\equiv2\pmod{6}\text{ and }a=0,\\A\Big(a-1,\frac{4b+1}{3}+c,2\Big)&\text{if }b\equiv2\pmod{6}\text{ and }a>0,\\A\Big(a,\frac{4}{3}b+c-3,5\Big)&\text{if }b\equiv3\pmod{6},\\A\Big(a+1,\frac{4b-7}{3}+c,2\Big)&\text{if }b\equiv4\pmod{6},\\A\Big(a,\frac{4b-5}{3}+c,3\Big)&\text{if }b\equiv5\pmod{6}.\end{cases}</math>
<math display="block">A(a,b,c)\rightarrow\begin{cases}A\Big(a,\frac{4}{3}b+c-1,2\Big)&\text{if }b\equiv0\pmod{6}\text{ and }\frac{4}{3}b+c\ge1,\\A\Big(a+1,\frac{4b-7}{3}+c,3\Big)&\text{if }b\equiv1\pmod{6}\text{ and }\frac{4(b-1)}{3}+c\ge1,\\0^\infty\;\textrm{<C}\;1^{(8b-1)/3+2c}\;2\;0^\infty&\text{if }b\equiv2\pmod{6}\text{ and }a=0,\\A\Big(a-1,\frac{4b+1}{3}+c,2\Big)&\text{if }b\equiv2\pmod{6}\text{ and }a>0,\\A\Big(a,\frac{4}{3}b+c-3,5\Big)&\text{if }b\equiv3\pmod{6},\\A\Big(a+1,\frac{4b-7}{3}+c,2\Big)&\text{if }b\equiv4\pmod{6},\\A\Big(a,\frac{4b-5}{3}+c,3\Big)&\text{if }b\equiv5\pmod{6}.\end{cases}</math>
Substituting <math>b\leftarrow6b+k</math>, where <math>k</math> is the remainder for each case yields the final result.
Substituting <math>b\leftarrow6b+k</math> where <math>k</math> is the remainder for each case yields the final result.
</div></div>
</div></div>
Using floor and ceiling functions, it is possible to describe the behaviour of <math>b</math> and <math>c</math> as one united formula:
Using the floor function, it is possible to describe the behaviour of <math>b</math> and <math>c</math> as one united formula:
<math display="block">\textstyle\begin{array}{c}f(m,n)=\Big(\frac{4m-3-4(\delta_1(m)-\delta_2(m)+\delta_4(m))-2(3\delta_3(m)+\delta_5(m))}{3}+n,2+\delta_1(m)+3\delta_3(m)+\delta_5(m)\Big),\\\delta_i(m)=\Big\lfloor\frac{x-i}{6}\Big\rfloor-\Big\lfloor\frac{x-i-1}{6}\Big\rfloor=\begin{cases}1&\text{if }x\equiv i\pmod{6},\\0&\text{otherwise.}\end{cases}\end{array}</math>
<math display="block">\textstyle\begin{array}{c}f(m,n)=\Big(\frac{4m-3-4(\delta_1(m)-\delta_2(m)+\delta_4(m))-2(3\delta_3(m)+\delta_5(m))}{3}+n,2+\delta_1(m)+3\delta_3(m)+\delta_5(m)\Big),\\\delta_i(m)=\Big\lfloor\frac{x-i}{6}\Big\rfloor-\Big\lfloor\frac{x-i-1}{6}\Big\rfloor=\begin{cases}1&\text{if }x\equiv i\pmod{6},\\0&\text{otherwise.}\end{cases}\end{array}</math>
In effect, the halting problem for Bigfoot is about whether through enough iterations of <math>f(m,n)</math> we encounter more <math>m</math> values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6.
In effect, the halting problem for Bigfoot is about whether through enough iterations of <math>f(m,n)</math> we encounter more <math>m</math> values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6.


It turns out that if <math>b</math> is odd and <math>c=2</math> then after four iterations of <math>A</math>, that will remain the case. This allows one to define a configuration that eliminates the <math>c</math> parameter and whose rules use a modulus of 81.<ref name="b"></ref>
An important insight is that if <math>b</math> is odd and <math>c=2</math>, then after four iterations of <math>A</math>, that will remain the case. This allows one to define a configuration that eliminates the <math>c</math> parameter and whose rules use a modulus of 81.<ref name="b"></ref>


In May 2024, Iijil shared a 7-state, 2-symbol machine, {{TM|0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB}}, that has the same behaviour as Bigfoot.<ref>P. Michel, "[https://bbchallenge.org/~pascal.michel/ha.html Historical survey of Busy Beavers]".</ref>
In May 2024, Iijil shared a 7-state, 2-symbol machine, {{TM|0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB}}, that has the same behaviour as Bigfoot.<ref>P. Michel, "[https://bbchallenge.org/~pascal.michel/ha.html Historical survey of Busy Beavers]".</ref>
== Trajectory ==
== Trajectory ==
After 69 steps Bigfoot will reach the configuration <math>A(2,1,2)</math> before the [[Collatz-like]] rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have <math>a=3999888</math>. Here are the first few:
After 69 steps, Bigfoot will reach the configuration <math>A(2,1,2)</math> before the [[Collatz-like]] rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have <math>a=3999888</math>. Here are the first few:
<math display="block">\begin{array}{|l|}\hline A(2,1,2)\xrightarrow{49}A(3,1,3)\xrightarrow{59}A(4,2,3)\xrightarrow{109}A(3,6,2)\xrightarrow{221}A(3,9,2)\xrightarrow{379}A(3,11,5)\xrightarrow{597}A(3,18,3)\rightarrow\cdots\\\hline\end{array}</math>
<math display="block">\begin{array}{|l|}\hline A(2,1,2)\xrightarrow{49}A(3,1,3)\xrightarrow{59}A(4,2,3)\xrightarrow{109}A(3,6,2)\xrightarrow{221}A(3,9,2)\xrightarrow{379}A(3,11,5)\xrightarrow{597}A(3,18,3)\rightarrow\cdots\\\hline\end{array}</math>
There exists a heuristic argument for Bigfoot being [[probviously]] nonhalting. After removing the instances in which <math>a</math> does not change, one notices that the trajectory of <math>a</math> values can be approximated by a random walk in which at each step, the walker moves +1 with probability <math display="inline">\frac{2}{3}</math> or moves -1 with probability <math display="inline">\frac{1}{3}</math>, starting at position 2. If <math>P(n)</math> is the probability that the walker will reach position -1 from position <math>n</math>, then <math display="inline">P(n)=\frac{1}{3}P(n-1)+\frac{2}{3}P(n+1)</math>. Solutions to this recurrence relation come in the form <math display="inline"> P(n)=c_02^{-n}+c_1</math>, which after applying the appropriate boundary conditions reduces to <math display="inline">P(n)=2^{-(n+1)}</math>. As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be <math display="inline">2^{-3999889}\approx 2.697\times 10^{-1204087}</math>.
There exists a heuristic argument for Bigfoot being [[probviously]] nonhalting. After removing the instances in which <math>a</math> does not change, one notices that the trajectory of <math>a</math> values can be approximated by a random walk in which at each step, the walker moves +1 with probability <math display="inline">\frac{2}{3}</math> or moves -1 with probability <math display="inline">\frac{1}{3}</math>, starting at position 2. If <math>P(n)</math> is the probability that the walker will reach position -1 from position <math>n</math>, then <math display="inline">P(n)=\frac{1}{3}P(n-1)+\frac{2}{3}P(n+1)</math>. Solutions to this recurrence relation come in the form <math display="inline"> P(n)=c_02^{-n}+c_1</math>, which after applying the appropriate boundary conditions reduces to <math display="inline">P(n)=2^{-(n+1)}</math>. As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be <math display="inline">2^{-3999889}\approx 2.697\times 10^{-1204087}</math>.

Revision as of 20:52, 28 March 2025

1RB2RA1LC_2LC1RB2RB_---2LA1LA (bbch)

Unsolved problem:
Does Bigfoot run forever?

Bigfoot is a BB(3,3) Cryptid. Its low-level behaviour was first shared over Discord by savask on 14 Oct 2023, and within two days, Shawn Ligocki described the high-level rules shown below, whose attributes inspired the Turing machine's name.[1]

0 1 2
A 1RB 2RA 1LC
B 2LC 1RB 2RB
C --- 2LA 1LA
The transition table of Bigfoot.

Analysis

Let A(a,b,c):=012a12b<A12c0. Then, A(a,6b,c)4a+(2b+1)48b+(12b+1)2c+13A(a,8b+c1,2),A(a,6b+1,c)4a+(6b+5)16b+(4b+1)6c+29A(a+1,8b+c1,3),A(0,6b+2,c)(b+1)96b+(3b+1)8c+180<C116b+2c+520,A(a,6b+2,c)4a+(2b+3)48b+(12b+7)2c+51A(a1,8b+c+3,2) if a1,A(a,6b+3,c)4a+(6b+7)16b+(12b+5)2c+91A(a,8b+c+1,5),A(a,6b+4,c)4a+(2b+3)48b+(12b+7)2c+63A(a+1,8b+c+3,2),A(a,6b+5,c)4a+(6b+11)16b+(4b+3)6c+103A(a,8b+c+5,3).

Proof

For now, we will work with the slightly different configuration A(a,b,c):=012a1b<A1c0. Consider the partial configuration P(m,n):=1m<A1n0. We first require the following shift rule: A>1ss2sA> Using this shift rule, we get 1m12n+1A>0 after n+1 steps, followed by 1m12n<C1220 four steps later. Observing that 22<C becomes <C11 in two steps leads to another shift rule: 22s<C2s<C12s From here, there are two different scenarios depending on if n is even or odd, given below as histories of transitions that use the aforementioned shift rules:

  1. If n0 (mod2), then what follows is:1m12n<C1220n1m1<C1n+122041m3<A1n+3220n+41m42n+4A>22011m42n+4<C120n+41m4<C1n+52041m6<A1n+720n+81m72n+8A>2011m72n+8<C10n+81m7<C1n+9041m9<A1n+110Therefore, we haveP(m,n)6n+43P(m9,n+11) if m9 and n0 (mod2).
  2. If n1 (mod2), then what follows is:1m12n<C1220n11m12<C1n22011m1<A1n+1220n+21m22n+2A>22011m22n+2<C120n+11m22<C1n+22011m2<A1n+320n+41m32n+4A>2011m32n+4<C10n+31m32<C1n+4011m3<A1n+50Therefore, we have

P(m,n)6n+19P(m3,n+5) if m3 and n1 (mod2). From this we know that Bigfoot's behaviour depends on the value of b modulo 12, and with A(a,b,c) we have P(b,c). The following shift rules will be useful: 12s<A2s<A21sB>1ss1sB>B>2ss2sB> Only even values of b and c are relevant, so there remain six possible scenarios:

  1. If b0 (mod12), then in i=0b/121(6(16i+c)+43+6(16i+11+c)+19)=i=0b/1214(48i+3c+32)=23b2+83b+bc steps we arrive at P(0,16×b12+c), or 012a<A14b/3+c0 when considering the complete configuration. What follows is:012a<A14b/3+c02a0<A21a14b/3+c0101B>21a14b/3+c02a+4b/3+c012a14b/3+c+1B>012012a14b/3+c2<A140This means that if 43b+c2, then we will reach A(a,43b+c2,4) in 4a+23b2+4b+bc+c+13 steps.
  2. If b2 (mod12), then in i=0(b2)/1214(48i+3c+32)=23b2+bc2c83 steps we arrive at P(2,4(b2)3+c), or 012a11<A1(4b2)/3+c0. What follows is:012a11<A14(b2)/3+c04(b2)/3+c+1012a124(b2)/3+c+1A>04012a124(b2)/3+c<C12204(b2)/3+c012a1<C14(b2)/3+c+12201012a<A214(b2)/3+c+12202a0<A21a214(b2)/3+c+1220101B>21a214(b2)/3+c+12204(b2)/3+2a+c+4012a+114(b2)/3+c+122B>018012a+114(b2)/3+c2<A160This means that if 4(b2)3+c2, then we will reach A(a+1,4b143+c,6) in 4a+23b2+4b+bc+c+553 steps.
  3. If b4 (mod12), then in 23b283b+bc4c steps we arrive at P(4,4(b4)3+c), or 012a1111<A14(b4)/3+c0. What follows is:012a1111<A14(b4)/3+c0(8b14)/3+2c012a11<A214(b4)/3+c+12203012a1<A14(b4)/3+c+32204(b4)/3+c+4012a24(b4)/3+c+4A>2201012a24(b4)/3+c+4<C1204(b4)/3+c+4012a<C14(b4)/3+c+5201012a11<A14(b4)/3+c+6204(b4)/3+c+7012a124(b4)/3+c+7A>201012a124(b4)/3+c+7<C104(b4)/3+c+6012a12<C14(b4)/3+c+701012a1<A14(b4)/3+c+802(a1)0<A21a114(b4)/3+c+80101B>21a114(b4)/3+c+802a+4(b4)/3+c+6012a114(b4)/3+c+9B>012012a114(b4)/3+c+6<A140This means that if a=0, then Bigfoot will reach the undefined C0 transition with the configuration 0<C1(4b1)/3+c20 in 23b2+83b+bc103 steps. Otherwise, it will proceed to reach A(a1,4b+23+c,4) in 4a+23b2+203b+bc+3c+413 steps.
  4. If b6 (mod12), then in 23b2163b+bc6c+8 steps we arrive at P(6,4(b6)3+c), or 012a111111<A14(b6)/3+c0. What follows is:012a111111<A14(b6)/3+c016b/3+4c14012a11<C14(b6)/3+c+5204012a<A14(b6)/3+c+7202a0<A21a14(b6)/3+c+720101B>21a14(b6)/3+c+7202a+4(b6)/3+c+8012a14(b6)/3+c+82B>060012a14(b6)/3+c+2<A1100This means that we will reach A(a,43b+c6,10) in 4a+23b2+43b+bcc+59 steps.
  5. If b8 (mod12), then in 23b28b+bc8c+643 steps we arrive at P(8,4(b8)3+c), or 012a18<A14(b8)/3+c0. What follows is:012a18<A14(b8)/3+c0(16b62)/3+4c012a11<A14(b8)/3+c+7204(b8)/3+c+8012a124(b8)/3+c+8A>201012a124(b8)/3+c+8<C104(b8)/3+c+8012a1<C14(b8)/3+c+901012a<A214(b8)/3+c+902a0<A21a214(b8)/3+c+90101B>21a214(b8)/3+c+902a+4(b8)/3+c+10012a+114(b8)/3+c+9B>012012a+114(b8)/3+c+6<A140This means that we will reach A(a+1,4b143+c,4) in 4a+23b2+43b+bcc+293 steps.
  6. If b10 (mod12), then in 23b2323b+bc10c+40 steps we arrive at P(10,4(b10)3+c), or 012a110<A14(b10)/3+c0. What follows is:012a110<A14(b10)/3+c08b+6c37012a1<A14(b10)/3+c+1104(b10)/3+c+12012a24(b10)/3+c+12A>04012a24(b10)/3+c+11<C12204(b10)/3+c+10012a2<C14(b10)/3+c+112201012a<A14(b10)/3+c+122202a0<A12a14(b10)/3+c+12220101B>12a14(b10)/3+c+122202a+4(b10)/3+c+14012a14(b10)/3+c+1322B>018012a14(b10)/3+c+10<A160This means that we will reach A(a,4b103+c,6) in 4a+23b2+43b+bcc+23 steps.

The information above can be summarized as A(a,b,c){A(a,43b+c2,4)if b0(mod12) and 43b+c2,A(a+1,4b143+c,6)if b2(mod12) and 4(b2)3+c2,0<C1(4b1)/3+c20if b4(mod12) and a=0,A(a1,4b+23+c,4)if b4(mod12) and a>0,A(a,43b+c6,10)if b6(mod12),A(a+1,4b143+c,4)if b8(mod12),A(a,4b103+c,6)if b10(mod12). Using the definitions of A and A to transform these rules produces this: A(a,b,c){A(a,43b+c1,2)if b0(mod6) and 43b+c1,A(a+1,4b73+c,3)if b1(mod6) and 4(b1)3+c1,0<C1(8b1)/3+2c20if b2(mod6) and a=0,A(a1,4b+13+c,2)if b2(mod6) and a>0,A(a,43b+c3,5)if b3(mod6),A(a+1,4b73+c,2)if b4(mod6),A(a,4b53+c,3)if b5(mod6). Substituting b6b+k where k is the remainder for each case yields the final result.

Using the floor function, it is possible to describe the behaviour of b and c as one united formula: f(m,n)=(4m34(δ1(m)δ2(m)+δ4(m))2(3δ3(m)+δ5(m))3+n,2+δ1(m)+3δ3(m)+δ5(m)),δi(m)=xi6xi16={1if xi(mod6),0otherwise. In effect, the halting problem for Bigfoot is about whether through enough iterations of f(m,n) we encounter more m values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6.

An important insight is that if b is odd and c=2, then after four iterations of A, that will remain the case. This allows one to define a configuration that eliminates the c parameter and whose rules use a modulus of 81.[1]

In May 2024, Iijil shared a 7-state, 2-symbol machine, 0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB (bbch), that has the same behaviour as Bigfoot.[2]

Trajectory

After 69 steps, Bigfoot will reach the configuration A(2,1,2) before the Collatz-like rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have a=3999888. Here are the first few: A(2,1,2)49A(3,1,3)59A(4,2,3)109A(3,6,2)221A(3,9,2)379A(3,11,5)597A(3,18,3) There exists a heuristic argument for Bigfoot being probviously nonhalting. After removing the instances in which a does not change, one notices that the trajectory of a values can be approximated by a random walk in which at each step, the walker moves +1 with probability 23 or moves -1 with probability 13, starting at position 2. If P(n) is the probability that the walker will reach position -1 from position n, then P(n)=13P(n1)+23P(n+1). Solutions to this recurrence relation come in the form P(n)=c02n+c1, which after applying the appropriate boundary conditions reduces to P(n)=2(n+1). As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be 239998892.697×101204087.

References

  1. 1.0 1.1 S. Ligocki, "BB(3, 3) is Hard (Bigfoot) (2024). Accessed 22 July 2024.
  2. P. Michel, "Historical survey of Busy Beavers".