User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Analysis by Polygon: Copied in rest of behavior
Polygon (talk | contribs)
Undo revision 5333 by Polygon (talk) removed skelet 17 again
Tag: Undo
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{TM|1RB2LB0LB_2LC2LA0LA_2RD1LC1RZ_1RA2LD1RD|halt}} is a pentational halting [[BB(4,3)]] TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over <math>3 \uparrow\uparrow\uparrow 88574</math>. Polygon analysed the TM by hand in October 2025, providing its score.
{machine|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}}
{{TM|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}} is a [[BB(6)]] [[holdout]] TM.


Pavel listed the halting tape as:
==Analysis==
<pre>
1 Z> 1^(162*3^((3*<(243*3^(6) - 5)/2; (<(54*3^((3b + 11)/2) - 2); (54*3^((3b + 14)/2) - 6); (54*3^(7) - 6)> + 1); (<(54*3^((3*<(54*3^(7) - 3); (54*3^((3b + 14)/2) - 6); (54*3^((81*3^(7) - 2)) - 6)> + 14)/2) - 2); (54*3^((3b + 14)/2) - 6); (54*3^(7) - 6)> + 1)> + 11)/2)) 2
</pre>


== Analysis by [[User:Polygon|Polygon]] ==
Early rules:
<pre>
<pre>
S is any tape configuration
S is any tape configuration


1. S 1^a <C S --> S <C 1^a S [+a steps]
1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S 1^a <D S --> S <D 2^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
3. S D> 2^a S --> S 1^a D> S [+a steps]
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
  S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)
</pre>


4. S (11)^a <A S --> S <A (22)^a S [+2a steps]
Later rules:
  S (11)^a <B S --> S <B (22)^a S [+2a steps]
<pre>
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf


5. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3 A> (22)^b-1 S [+8a +24 steps]
b mod 2 = 0:
6. 0^inf 2 (11)^a A> (22)^b S --> 0^inf 2 (11)^a+3b A> S
  b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
  b = 0:
      a mod 2 = 0:
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
        a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
  b ≥ 3:
      a mod 2 = 0:
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
        a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
        a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.


7. 0^inf 2 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^a+2 0 (22)^b-1 S [+6a +28 steps]
'''Accelerated rules:'''
<pre>
R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)


8. 0^inf 2 (11)^a A> 2 0 2 S --> 0^inf 2 1 (11)^a+3 A> S [+8a +27 steps]
A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]


9. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^3a+4 A> (22)^b-1 S
A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
10. 0^inf 2 1 (11)^a A> (22)^b S --> 0^inf 2 1 (11)^g_1^b(a) A> S
by repetition of rule A1


11-1. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 (11)^3a+4 A> 0 (22)^b-1 2 S
A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
11-2. 0^inf 2 1 (11)^a A> 0 (22)^b S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 0 (22)^b-2 2 S
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]
</pre>


12. 0^inf 2 (11)^a A> 0 11 S --> 0^inf 2 1 (11)^1 A> 0 (22)^a+2 2 S [+6a +31 steps]
'''Using the accelerated rules:'''


13. 0^inf 2 1 (11)^a A> 0 2^b S --> 0^inf 2 1 (11)^g_2(a) A> 0 2^b-3 S
<pre>
14. 0^inf 2 1 (11)^a A> 0 2^3k+v S --> 0^inf 2 1 (11)^(g_2)^k(a) A> 0 2^v S
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
 
15. 0^inf 2 1 <A S --> 0^inf 1 D> 2^3 S [+8 steps]
 
16. 0^inf 2 1 (11)^a A> 0 2 1 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 (11)^3a+7 2 0^inf (may be irrelevant)


17. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^1 A> (22)^3a+6 2 S
b mod 2 = 0:
18. 0^inf 2 1 (11)^a A> 0 (22)^1 1 S --> 0^inf 2 1 (11)^g_2(a) A> 2 S
  b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
 
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
19. 0^inf 2 1 (11)^a A> 2 1^3 S --> 0^inf 2 1 (11)^1 A> 0 (22)^3a+5 2 S
  b = 0:
19*. 0^inf 2 1 (11)^a A> 2 1^2 S --> 0^inf 1 (11)^3a+5 D> S
      a mod 2 = 0:
19**. 0^inf 2 1 (11)^a A> 2 1 S --> 0^inf <B (22)^3a+4 S
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
19*** 0^inf 2 1 (11)^a A> 2 S --> 0^inf (11)^3a+3 1 B> S
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
 
        a = 0: unreachable
20. 0^inf 2 1 (11)^a A> 0 (22)^1 1^b S --> 0^inf 2 1 (11)^g_3(a) A> 0 (22)^1 1^b-4 S
      a mod 2 = 1:
21. 0^inf 2 1 (11)^a A> 0 (22)^1 1^4k+v S --> 0^inf 2 1 (11)^g_3^k(a) A> 0 (22)^1 1^v S
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
 
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
22. 0^inf 2 1 (11)^a A> 0 (22)^1 1^3 2 0^inf --> 0^inf 2 1 (11)^1 A> 0 (22)^1 1^6*g_2(a)+12 2 0^inf
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
23. 0^inf 2 1 (11)^a A> 0 (22)^1 1^2 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf
b mod 2 = 1:
Bonus rules which are not relevant for this TMs behavior:
  b ≥ 3:
24. 0^inf (11)^a A> 0 (22)^1 1 2 0^inf --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf
      a mod 2 = 0:
25. 0^inf 2 1 (11)^a A> 0 (22)^1 2 0^inf --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
        a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
        a = 1: unreachable
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
</pre>
The following functions were used in these rules:
g_1(n) = 3n + 4
Note that <math>(3^{k}-2) \times 3 + 4 = 3^{k+1} - 2</math>
And 1 = 3^1 - 2
It follows that <math>g_1^{n}(1) = 3^{n+1}-2</math>
<math>g_2(n) = 3^{3n + 7}-2</math>
<math>g_3(n) = g_2^{2 \times (g_2(n)+3)}(1)</math>
Further:
Let L(a,b) = 0^inf 2 1 (11)^a A> 0 (22)^1 1^b 2 0^inf
* L(a,4k+v) --> L(g_3^k(a),v) by rule 21
* L(a,0) --> 0^inf 1 Z> (11)^g_2(a)+1 2 0^inf by rule 25
* L(a,1) --> 0^inf 1 Z> (11)^3*g_2(a)+5 2 0^inf by rule 24
* L(a,2) --> 0^inf 1 Z> (11)^3*g_2(a)+6 2 0^inf by rule 23
* L(a,3) --> L(1,6*g_2(a)+12) by rule 22
The TM reaches configuration L(1,3) after running for 34 steps.
L(1,3) --> L(1,6*g_2(1)+12) by rule 22, this can be simplified to L(1,354294), then:
--> L(g_3^88573(1),2) by rule 21
--> 0^inf 1 Z> <math>(11)^{3 \times (g_2(g_3^{88573}(1)) +6}</math> 2 0^inf by rule 22
So <math>\sigma = 6 \times g_2(g_3^{88573}(1)) + 14</math>.


This can be bunded by:
The TM starts in configuration A(0, 2, 0) after 7 steps.


<math>3 \uparrow\uparrow\uparrow 88574 < \sigma < S < 3 \uparrow\uparrow\uparrow 88575</math>
[Category:BB(6)]]

Latest revision as of 18:44, 4 December 2025

{machine|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}} 1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD (bbch) is a BB(6) holdout TM.

Analysis

Early rules:

S is any tape configuration

1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
   S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)

Later rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.

Accelerated rules:

R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)

A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]

A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1

A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]

Using the accelerated rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: unreachable
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: unreachable
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

The TM starts in configuration A(0, 2, 0) after 7 steps.

[Category:BB(6)]]