|
|
(22 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| ={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}=
| | {{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}} is a pentational halting [[BB(4,3)]] TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over <math>2 \uparrow^{4} 5</math>, making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score. |
| {| class="wikitable"
| |
| |+
| |
| !
| |
| !0
| |
| !1
| |
| !2
| |
| |-
| |
| |A
| |
| |1RB
| |
| |1RD
| |
| |1LC
| |
| |-
| |
| |B
| |
| |2LB
| |
| |1RB
| |
| |1LC
| |
| |-
| |
| |C
| |
| |1RZ
| |
| |1LA
| |
| |1LD
| |
| |-
| |
| |D
| |
| |2RB
| |
| |2RA
| |
| |2RD
| |
| |}
| |
| <pre>
| |
| S is any tape configuration
| |
| 1. S D> 2^a S --> S 2^a D> S [+a steps]
| |
| 2. S B> 1^a S --> S 1^a B> S [+a steps]
| |
| 3. S 1 B> 0 S --> S <A 1^2 S [+4 steps]
| |
| 4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
| |
| S A> (11)^a S --> S (12)^a A> S [+2a steps]
| |
| 5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
| |
| S (12)^a <A S --> S <A (11)^a S [+2a steps]
| |
| 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]
| |
| | |
| 7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps]
| |
| by:
| |
| S (12)^a 2 (12)^b A> 0^2 S
| |
| --> S (12)^a 2 (12)^b 1 B> 0 S
| |
| --> S (12)^a 2 (12)^b <A (11) S
| |
| --> S (12)^a 2 <A (11)^b+1 S
| |
| --> S (12)^a <C 1 (11)^b+1 S
| |
| --> S (12)^a-1 1 <D (11)^b+2 S
| |
| --> S (12)^a-1 2 A> (11)^b+2 S
| |
| --> S (12)^a-1 2 (12)^b+2 A> S
| |
|
| |
|
| 8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps]
| | Pavel listed the halting tape as: |
| Obtained by repeating rule 8.
| |
| | |
| 9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps]
| |
| by:
| |
| S (12)^a <D (11)^b 0^inf
| |
| --> S (12)^a D> (11)^b 0^inf
| |
| --> S (12)^a (21)^b D> 0^inf
| |
| --> S (12)^a (21)^b 2 B> 0^inf
| |
| --> S (12)^a (21)^b 2 <B 2 0^inf
| |
| --> S (12)^a (21)^b <C 1 2 0^inf
| |
| --> S (12)^a <C (11)^b 1 2 0^inf
| |
| --> S (12)^a-1 1 <D (11)^b+1 2 0^inf
| |
| --> S (12)^a-1 2 A> (11)^b+1 2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+1 A> 2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+1 <C 1 0^inf
| |
| --> S (12)^a-1 2 (12)^b 1 <D 11 0^inf
| |
| --> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf
| |
| --> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf
| |
| --> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf
| |
| --> S (12)^a-1 2^2 <A (11)^2b+2 0^inf
| |
| --> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf
| |
| --> S (12)^a-1 <D (11)^2b+3 0^inf
| |
| | |
| 10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
| |
| Obtained by repeating rule 9.
| |
| | |
| 11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps]
| |
| by:
| |
| S (11)^a <D (11)^b 0^inf
| |
| --> S (11)^a-1 1 2 A> (11)^b 0^inf
| |
| --> S (11)^a-1 (12)^b+1 A> 0^inf
| |
| --> S (11)^a-1 <A (11)^b+2 0^inf
| |
| --> S (11)^a-1 D> (11)^b+2 0^inf
| |
| --> S (11)^a-1 (21)^b+2 D> 0^inf
| |
| --> S (11)^a-1 (21)^b+2 2 B> 0^inf
| |
| --> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
| |
| --> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
| |
| --> S (11)^a-1 <C (11)^b+2 1 2 0^inf
| |
| --> S (11)^a-2 1 <A (11)^b+3 2 0^inf
| |
| --> S (11)^a-2 1 D> (11)^b+3 2 0^inf
| |
| --> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
| |
| --> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
| |
| --> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
| |
| --> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
| |
| --> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
| |
| --> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
| |
| Note that 1 (21)^k = (12)^k 1
| |
| = S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
| |
| --> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
| |
| --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
| |
| </pre>
| |
| Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
| |
| * Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
| |
| * Rule 10: A(a, b, c) --> <math>A(a,0,2^{b} \times c + 2^{b} \times 3 - 3)</math> which becomes <math>A(a,0,2^{b+1} \times 3 - 3)</math> if c = 3.
| |
| * Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)
| |
| | |
| Further: let <math>f(n) = 2^{n+1} \times 3</math>
| |
| * If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3)
| |
| | |
| * A(2k + d, 0, c) --> <math>A(d, f^{k-1}(c+3), 3)</math>
| |
| <pre> | | <pre> |
| The TM enters configuration A(19, 2, 3) after 799 steps with tape:
| | 1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19)) |
| 0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
| |
| </pre> | | </pre> |
| ==Trajectory==
| |
| A(19, 2, 3) --> A(19, 0, 21) --> <math>A(1, f^{8}(24), 3)</math>
| |
|
| |
|
| --> <math>A(1, 0, f^{9}(24) - 3)</math>
| | ==Analysis by Polygon== |
| | |
| Let's have <math> f^{9}(24) - 3</math> = m.
| |
| <pre>
| |
| Final trajectory:
| |
| 0^inf 2 1 (11)^1 <D (11)^m 0^inf
| |
| --> 0^inf 2 1 1 2 A> (11)^m 0^inf
| |
| --> 0^inf 2 1 (12)^m+1 A> 0^inf
| |
| --> 0^inf 2 1 <A (11)^m+2 0^inf
| |
| --> 0^inf 2 1 D> (11)^m+2 0^inf
| |
| --> 0^inf (21)^m+3 D> 0^inf
| |
| --> 0^inf (21)^m+3 2 B> 0^inf
| |
| --> 0^inf (21)^m+3 2 <B 2 0^inf
| |
| --> 0^inf (21)^m+3 <C (12)^1 0^inf
| |
| --> 0^inf <C (11)^m+3 (12)^1 0^inf
| |
| --> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
| |
| Score = 2m + 9
| |
| | |
| Score calculated in HyperCalc:
| |
| (10^)^8 30,302,671.815163
| |
| Or in tetration: 10^^10.873987 (truncated)
| |
| </pre>
| |
| | |
| =1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD= | |
| {| class="wikitable"
| |
| |+
| |
| !
| |
| !0
| |
| !1
| |
| !2
| |
| |-
| |
| |A
| |
| |1RB
| |
| |1RD
| |
| |1LC
| |
| |-
| |
| |B
| |
| |2LB
| |
| |1RB
| |
| |1LC
| |
| |-
| |
| |C
| |
| |1RZ
| |
| |1LA
| |
| |1LD
| |
| |-
| |
| |D
| |
| |0RB
| |
| |2RA
| |
| |2RD
| |
| |}
| |
| <pre> | | <pre> |
| S is any tape configuration | | S is any tape configuration |
Line 190: |
Line 19: |
|
| |
|
| 7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps] | | 7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps] |
| by:
| |
| S A> (11)^1 2^b S
| |
| --> S (12)^1 A> 2^b S
| |
| --> S (12)^1 <C 1 2^b-1 S
| |
| --> S 1 <D (11)^1 2^b-1 S
| |
| --> S 2 A> (11)^1 2^b-1 S
| |
| 8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps] | | 8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps] |
| by repetition of rule 7
| |
|
| |
|
| 9. S D> 0^2 S --> S <B 2^2 S [+3 steps] | | 9. S D> 0^2 S --> S <B 2^2 S [+3 steps] |
|
| |
|
| 10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps] | | 10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps] |
| by:
| |
| S 2 <D (11)^a 0^2 S
| |
| --> S 2 D> (11)^a 0^2 S
| |
| --> S 2 (21)^a D> 0^2 S
| |
| --> S 2 (21)^a <B 2^2 S
| |
| --> S 2 (21)^a B> 2^2 S
| |
| --> S 2 (21)^a <C 1 2 S
| |
| --> S 2 <C (11)^a 1 2 S
| |
| --> S <D (11)^a+1 2 S
| |
|
| |
| 11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps] | | 11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps] |
| by:
| |
| S 2 <D (11)^a 2 0^2 S
| |
| --> S 2 D> (11)^a 2 0^2 S
| |
| --> S 2 (21)^a D> 2 0^2 S
| |
| --> S 2 (21)^a 2 D> 0^2 S
| |
| --> S 2 (21)^a 2 <B 2^2 S
| |
| --> S 2 (21)^a <C 1 2^2 S
| |
| --> S 2 <C (11)^a 1 2^2 S
| |
| --> S <D (11)^a+1 2^2 S
| |
|
| |
|
| 12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps] | | 12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps] |
| by:
| |
| S 1^a <A (11)^b 0^2 S
| |
| --> S 1^a D> (11)^b 0^2 S
| |
| --> S 1^a (21)^b D> 0^2 S
| |
| --> S 1^a (21)^b <B 2^2 S
| |
| --> S 1^a (21)^b B> 2^2 S
| |
| --> S 1^a (21)^b <C 1 2 S
| |
| --> S 1^a <C (11)^b 1 2 S
| |
| --> S 1^a-1 <A (11)^b+1 2 S
| |
|
| |
| 13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps] | | 13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps] |
| by:
| |
| S 1^a <A (11)^b 2 0^2 S
| |
| --> S 1^a D> (11)^b 2 0^2 S
| |
| --> S 1^a (21)^b D> 2 0^2 S
| |
| --> S 1^a (21)^b 2 D> 0^2 S
| |
| --> S 1^a (21)^b 2 <B 2^2 S
| |
| --> S 1^a (21)^b <C 1 2^2 S
| |
| --> S 1^a <C (11)^b 1 2^2 S
| |
| --> S 1^a-1 <A (11)^b+1 2^2 S
| |
|
| |
|
| 14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps] | | 14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps] |
| by:
| |
| S (12)^a 1 <D (11)^b 0^2 S
| |
| --> S (12)^a 2 A> (11)^b 0^2 S
| |
| --> S (12)^a 2 (12)^b A> 0^2 S
| |
| --> S (12)^a 2 <A (11)^b+1 S
| |
| --> S (12)^a <C 1 (11)^b+1 S
| |
| --> S (12)^a-1 1 <D (11)^b+2 S
| |
|
| |
| 15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps] | | 15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps] |
| by repetition of rule 14
| |
|
| |
| 16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf [+10b +26 steps]
| |
| by:
| |
| S (12)^a 2 1 <D (11)^b 0^inf
| |
| --> S (12)^a 2^2 A> (11)^b 0^inf
| |
| --> S (12)^a 2^2 (12)^b A> 0^inf
| |
| --> S (12)^a 2^2 <A (11)^b+1 0^inf
| |
| --> S (12)^a 2 <C 1 (11)^b+1 0^inf
| |
| --> S (12)^a <D (11)^b+2 0^inf
| |
| --> S (12)^a-1 1 <D (11)^b+2 2 0^inf by rule 10
| |
| --> S (12)^a-1 2 A> (11)^b+2 2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+2 A> 2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+2 <C 1 0^inf
| |
| --> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf
| |
|
| |
| 17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+3 0^inf [+4a^2 +4ab +6b +22 steps]
| |
| by:
| |
| S (12)^a 2 1 <D (11)^b 0^inf
| |
| --> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf
| |
| --> S (12)^a-1 2 1 <D (11)^2b+3 0^inf
| |
|
| |
|
| 18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*3-3 0^inf | | 16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps] |
| by repetition of rule 17
| | 17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf |
| | 18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf |
|
| |
|
| ---
| | 19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf |
| 19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf | |
| by:
| |
| S (12)^a 2 1 <D (11)^b 2 0^inf
| |
| --> S (12)^a 2^2 A> (11)^b 2 0^inf
| |
| --> S (12)^a 2^2 (12)^b A> 2 0^inf
| |
| --> S (12)^a 2^2 (12)^b <C 1 0^inf
| |
| --> S (12)^a 2^2 (12)^b-1 1 <D (11)^1 0^inf
| |
| --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf by rule 15 | |
|
| |
|
| 20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf | | 20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf |
| by:
| |
| S (12)^a 1 <D (11)^b 2 0^inf
| |
| --> S (12)^a 2 A> (11)^b 2 0^inf
| |
| --> S (12)^a 2 (12)^b A> 2 0^inf
| |
| --> S (12)^a 2 (12)^b <C 1 0^inf
| |
| --> S (12)^a 2 (12)^b-1 1 <D (11)^1 0^inf
| |
| --> S (12)^a 2 1 <D (11)^2b-1 0^inf by rule 15
| |
|
| |
|
| 21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+5)-3 0^inf | | 21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf |
| by:
| |
| S (12)^a 2^2 1 <D (11)^b 0^inf
| |
| --> S (12)^a 2^3 A> (11)^b 0^inf
| |
| --> S (12)^a 2^3 (12)^b A> 0^inf
| |
| --> S (12)^a 2^3 <A (11)^b+1 0^inf
| |
| --> S (12)^a 2^2 <C 1 (11)^b+1 0^inf
| |
| --> S (12)^a 2 <D (11)^b+2 0^inf
| |
| --> S (12)^a <D (11)^b+3 2 0^inf by rule 10
| |
| --> S (12)^a-1 1 <D (11)^b+4 2^2 0^inf by rule 11
| |
| --> S (12)^a-1 2 A> (11)^b+4 2^2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+4 A> 2^2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+4 <C 1 2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+3 1 <D (11)^1 2 0^inf
| |
| --> S (12)^a-1 2 (12)^b+3 2 1 <D (11)^1 0^inf by rule 20
| |
| --> S (12)^a-1 2^2 1 <D (11)^(2^(b+3)*1)+(2^(b+3)*3)-3 0^inf by rule 18
| |
| = S (12)^a-1 2^2 1 <D (11)^(2^(b+5)-3) 0^inf
| |
|
| |
|
| 22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf | | 22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf |
| by:
| |
| S 1 <D (11)^b 2^2 0^inf
| |
| --> S 2 A> (11)^b 2^2 0^inf
| |
| --> S 2 (12)^b A> 2^2 0^inf
| |
| --> S 2 (12)^b <C 1 2 0^inf
| |
| --> S 2 (12)^b-1 1 <D (11)^1 2 0^inf
| |
| --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf by rule 20
| |
|
| |
|
| 23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf | | 23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf |
| by:
| |
| S (11)^a 2^2 1 <D (11)^b 0^inf
| |
| --> S (11)^a 2^3 A> (11)^b 0^inf
| |
| --> S (11)^a 2^3 (12)^b A> 0^inf
| |
| --> S (11)^a 2^3 <A (11)^b+1 0^inf
| |
| --> S (11)^a 2^2 <C 1 (11)^b+1 0^inf
| |
| --> S (11)^a 2 <D (11)^b+2 0^inf
| |
| --> S (11)^a <D (11)^b+3 2 0^inf by rule 10
| |
| --> S (11)^a-1 1 2 A> (11)^b+3 2 0^inf
| |
| --> S (11)^a-1 (12)^b+4 A> 2 0^inf
| |
| --> S (11)^a-1 (12)^b+4 <C 1 0^inf
| |
| --> S (11)^a-1 (12)^b+3 1 <D (11)^1 0^inf
| |
| --> S (11)^a-1 1 <D (11)^2b+7 0^inf by rule 15
| |
| --> S (11)^a-1 2 A> (11)^2b+7 0^inf
| |
| --> S (11)^a-1 2 (12)^2b+7 A> 0^inf
| |
| --> S (11)^a-1 2 <A (11)^2b+8 0^inf
| |
| --> S (11)^a-1 <C 1 (11)^2b+8 0^inf
| |
| --> S (11)^a-2 1 <A (11)^2b+9 0^inf
| |
| --> S (11)^a-2 <A (11)^2b+10 2 0^inf by rule 12
| |
| --> S (11)^a-3 1 <A (11)^2b+11 2^2 0^inf by rule 13
| |
| --> S (11)^a-3 1 D> (11)^2b+11 2^2 0^inf
| |
| --> S (11)^a-3 1 (21)^2b+11 D> 2^2 0^inf
| |
| --> S (11)^a-3 1 (21)^2b+11 2^2 D> 0^inf
| |
| --> S (11)^a-3 1 (21)^2b+11 2^2 <B 2^2 0^inf
| |
| --> S (11)^a-3 1 (21)^2b+11 2 <C 1 2^2 0^inf
| |
| --> S (11)^a-3 1 (21)^2b+11 <D (11)^1 2^2 0^inf
| |
| = S (11)^a-3 (12)^2b+11 1 <D (11)^1 2^2 0^inf
| |
| --> S (11)^a-3 (12)^2b+11 2 (12)^0 2 1 <D (11)^1 0^inf
| |
| = S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
| |
|
| |
| 24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf | | 24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf |
| by:
| |
| 0^inf 2^2 1 <D (11)^c 0^inf
| |
| --> 0^inf 2^3 A> (11)^c 0^inf
| |
| --> 0^inf 2^3 (12)^c A> 0^inf
| |
| --> 0^inf 2^3 <A (11)^c+1 0^inf
| |
| --> 0^inf 2^2 <C 1 (11)^c+1 0^inf
| |
| --> 0^inf 2 <D (11)^c+2 0^inf
| |
| --> 0^inf <D (11)^c+3 2 0^inf by rule 10
| |
| --> 0^inf B> (11)^c+3 2 0^inf
| |
| --> 0^inf (11)^c+3 B> 2 0^inf
| |
| --> 0^inf (11)^c+3 <C 1 0^inf
| |
| --> 0^inf (11)^c+2 1 <A (11)^1 0^inf
| |
| --> 0^inf (11)^c+2 <A (11)^2 2 0^inf by rule 12
| |
| --> 0^inf (11)^c+1 1 <A (11)^3 2^2 0^inf by rule 13
| |
| --> 0^inf (11)^c+1 1 D> (11)^3 2^2 0^inf
| |
| --> 0^inf (11)^c+1 1 (21)^3 D> 2^2 0^inf
| |
| --> 0^inf (11)^c+1 1 (21)^3 2^2 D> 0^inf
| |
| --> 0^inf (11)^c+1 1 (21)^3 2^2 <B 2^2 0^inf
| |
| --> 0^inf (11)^c+1 (12)^3 1 2 <C 1 2^2 0^inf
| |
| --> 0^inf (11)^c+1 (12)^3 1 <D (11)^1 2^2 0^inf
| |
| --> 0^inf (11)^c+1 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
| |
| = 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
| |
|
| |
| 25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf | | 25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf |
| by:
| |
| 0^inf (11)^2 2^2 1 <D (11)^c 0^inf
| |
| --> 0^inf (11)^2 2^3 A> (11)^c 0^inf
| |
| --> 0^inf (11)^2 2^3 (12)^c A> 0^inf
| |
| --> 0^inf (11)^2 2^3 <A (11)^c+1 0^inf
| |
| --> 0^inf (11)^2 2^2 <C 1 (11)^c+1 0^inf
| |
| --> 0^inf (11)^2 2 <D (11)^c+2 0^inf
| |
| --> 0^inf (11)^2 <D (11)^c+3 2 0^inf
| |
| --> 0^inf (11)^1 1 2 A> (11)^c+3 2 0^inf
| |
| --> 0^inf (11)^1 (12)^c+4 A> 2 0^inf
| |
| --> 0^inf (11)^1 (12)^c+4 <C 1 0^inf
| |
| --> 0^inf (11)^1 (12)^c+3 1 <D (11)^1 0^inf
| |
| --> 0^inf (11)^1 1 <D (11)^2c+7 0^inf by rule 15
| |
| --> 0^inf (11)^1 2 A> (11)^2c+7 0^inf
| |
| --> 0^inf (11)^1 2 (12)^2c+7 A> 0^inf
| |
| --> 0^inf (11)^1 2 <A (11)^2c+8 0^inf
| |
| --> 0^inf (11)^1 <C 1 (11)^2c+8 0^inf
| |
| --> 0^inf 1 <A (11)^2c+9 0^inf
| |
| --> 0^inf <A (11)^2c+10 2 0^inf by rule 12
| |
| --> 0^inf 1 B> (11)^2c+10 2 0^inf
| |
| --> 0^inf 1 (11)^2c+10 B> 2 0^inf
| |
| --> 0^inf 1 (11)^2c+10 <C 1 0^inf
| |
| --> 0^inf (11)^2c+10 <A (11)^1 0^inf
| |
| --> 0^inf (11)^2c+9 1 <A (11)^2 2 0^inf by rule 12
| |
| --> 0^inf (11)^2c+9 <A (11)^3 2^2 0^inf by rule 13
| |
| --> 0^inf (11)^2c+9 D> (11)^3 2^2 0^inf
| |
| --> 0^inf (11)^2c+9 (21)^3 D> 2^2 0^inf
| |
| --> 0^inf (11)^2c+9 (21)^3 2^2 D> 0^inf
| |
| --> 0^inf (11)^2c+9 (21)^3 2^2 <B 2^2 0^inf
| |
| --> 0^inf (11)^2c+9 (21)^3 2 <C 1 2^2 0^inf
| |
| --> 0^inf 1 (11)^2c+8 (12)^3 1 <D (11)^1 2^2 0^inf
| |
| --> 0^inf 1 (11)^2c+8 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
| |
| --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
| |
|
| |
| 26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf | | 26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf |
| by:
| |
| 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf
| |
| --> 0^inf 1 (11)^1 2^3 A> (11)^c 0^inf
| |
| --> 0^inf 1 (11)^1 2^3 (12)^c A> 0^inf
| |
| --> 0^inf 1 (11)^1 2^3 <A (11)^c+1 0^inf
| |
| --> 0^inf 1 (11)^1 2^2 <C 1 (11)^c+1 0^inf
| |
| --> 0^inf 1 (11)^1 2 <D (11)^c+2 0^inf
| |
| --> 0^inf 1 (11)^1 <D (11)^c+3 2 0^inf by rule 10
| |
| --> 0^inf (11)^1 2 A> (11)^c+3 2 0^inf
| |
| --> 0^inf (11)^1 2 (12)^c+3 A> 2 0^inf
| |
| --> 0^inf (11)^1 2 (12)^c+3 <C 1 0^inf
| |
| --> 0^inf (11)^1 2 (12)^c+2 1 <D (11)^1 0^inf
| |
| --> 0^inf (11)^1 2 1 <D (11)^2c+5 0^inf by rule 15
| |
| --> 0^inf (11)^1 2^2 A> (11)^2c+5 0^inf
| |
| --> 0^inf (11)^1 2^2 (12)^2c+5 A> 0^inf
| |
| --> 0^inf (11)^1 2^2 <A (11)^2c+6 0^inf
| |
| --> 0^inf (11)^1 2 <C 1 (11)^2c+6 0^inf
| |
| --> 0^inf (11)^1 <D (11)^2c+7 0^inf
| |
| --> 0^inf 1 2 A> (11)^2c+7 0^inf
| |
| --> 0^inf (12)^2c+8 A> 0^inf
| |
| --> 0^inf <A (11)^2c+9 0^inf
| |
| --> 0^inf 1 B> (11)^2c+9 0^inf
| |
| --> 0^inf 1 (11)^2c+9 B> 0^inf
| |
| --> 0^inf 1 (11)^2c+9 <B 2 0^inf
| |
| --> 0^inf 1 (11)^2c+9 B> 2 0^inf
| |
| --> 0^inf 1 (11)^2c+9 <C 1 0^inf
| |
| --> 0^inf 1 (11)^2c+8 1 <A (11)^1 0^inf
| |
| --> 0^inf 1 (11)^2c+8 <A (11)^2 2 0^inf by rule 12
| |
| --> 0^inf (11)^2c+8 <A (11)^3 2^2 0^inf by rule 13
| |
| --> 0^inf (11)^2c+8 D> (11)^3 2^2 0^inf
| |
| --> 0^inf (11)^2c+8 (21)^3 D> 2^2 0^inf
| |
| --> 0^inf (11)^2c+8 (21)^3 2^2 D> 0^inf
| |
| --> 0^inf (11)^2c+8 (21)^3 2^2 <B 2^2 0^inf
| |
| --> 0^inf 1 (11)^2c+7 (12)^3 1 2 <C 1 2^2 0^inf
| |
| --> 0^inf 1 (11)^2c+7 (12)^3 1 <D (11)^1 2^2 0^inf
| |
| --> 0^inf 1 (11)^2c+7 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
| |
| = 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
| |
|
| |
| 27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf | | 27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf |
| by:
| |
| 0^inf 1 2^2 1 <D (11)^c 0^inf
| |
| --> 0^inf 1 2^3 A> (11)^c 0^inf
| |
| --> 0^inf 1 2^3 (12)^c A> 0^inf
| |
| --> 0^inf 1 2^3 <A (11)^c+1 0^inf
| |
| --> 0^inf 1 2^2 <C 1 (11)^c+1 0^inf
| |
| --> 0^inf 1 2 <D (11)^c+2 0^inf
| |
| --> 0^inf 1 <D (11)^c+3 2 0^inf by rule 10
| |
| --> 0^inf 2 A> (11)^c+3 2 0^inf
| |
| --> 0^inf 2 (12)^c+3 A> 2 0^inf
| |
| --> 0^inf 2 (12)^c+3 <C 1 0^inf
| |
| --> 0^inf 2 (12)^c+2 1 <D (11)^1 0^inf
| |
| --> 0^inf 2 1 <D (11)^2c+5 0^inf
| |
| --> 0^inf 2^2 A> (11)^2c+5 0^inf
| |
| --> 0^inf 2^2 (12)^2c+5 A> 0^inf
| |
| --> 0^inf 2^2 <A (11)^2c+6 0^inf
| |
| --> 0^inf 2 <C 1 (11)^2c+6 0^inf
| |
| --> 0^inf <D (11)^2c+7 0^inf
| |
| --> 0^inf B> (11)^2c+7 0^inf
| |
| --> 0^inf (11)^2c+7 B> 0^inf
| |
| --> 0^inf (11)^2c+7 <B 2 0^inf
| |
| --> 0^inf (11)^2c+7 B> 2 0^inf
| |
| --> 0^inf (11)^2c+7 <C 1 0^inf
| |
| --> 0^inf (11)^2c+6 1 <A (11)^1 0^inf
| |
| --> 0^inf (11)^2c+6 <A (11)^2 2 0^inf by rule 12
| |
| --> 0^inf (11)^2c+5 1 <A (11)^3 2^2 0^inf by rule 13
| |
| --> 0^inf (11)^2c+5 1 D> (11)^3 2^2 0^inf
| |
| --> 0^inf (11)^2c+5 1 (21)^3 D> 2^2 0^inf
| |
| --> 0^inf (11)^2c+5 (12)^3 1 2^2 D> 0^inf
| |
| --> 0^inf (11)^2c+5 (12)^3 1 2^2 <B 2^2 0^inf
| |
| --> 0^inf (11)^2c+5 (12)^3 1 2 <C 1 2^2 0^inf
| |
| --> 0^inf (11)^2c+5 (12)^3 1 <D (11)^1 2^2 0^inf by rule 22
| |
| --> 0^inf (11)^2c+5 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
| |
| = 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
| |
|
| |
| 28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf | | 28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf |
| by:
| |
| 0^inf (11)^1 2^2 1 <D (11)^c 0^inf
| |
| --> 0^inf (11)^1 2^3 A> (11)^c 0^inf
| |
| --> 0^inf (11)^1 2^3 (12)^c A> 0^inf
| |
| --> 0^inf (11)^1 2^3 <A (11)^c+1 0^inf
| |
| --> 0^inf (11)^1 2^2 <C 1 (11)^c+1 0^inf
| |
| --> 0^inf (11)^1 2 <D (11)^c+2 0^inf
| |
| --> 0^inf (11)^1 <D (11)^c+3 2 0^inf by rule 10
| |
| --> 0^inf 1 2 A> (11)^c+3 2 0^inf
| |
| --> 0^inf (12)^c+4 A> 2 0^inf
| |
| --> 0^inf (12)^c+4 <C 1 0^inf
| |
| --> 0^inf (12)^c+3 1 <D (11)^1 0^inf
| |
| --> 0^inf 1 <D (11)^2c+7 0^inf
| |
| --> 0^inf 2 A> (11)^2c+7 0^inf
| |
| --> 0^inf 2 (12)^2c+7 A> 0^inf
| |
| --> 0^inf 2 <A (11)^2c+8 0^inf
| |
| --> 0^inf <C 1 (11)^2c+8 0^inf
| |
| --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
| |
| </pre> | | </pre> |
| ==Functions==
| |
| Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | | Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf |
|
| |
|
| Let D1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | | Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf |
|
| |
|
| Let <math>f_1(n) = 2^{n+5}-3</math> | | Let <math>f_1(n) = 2^{n+4} \times 3 -5</math> |
|
| |
|
| Let <math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where<math>f_2(0, b) = b</math> | | Let <math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where<math>f_2(0, b) = b</math> |
|
| |
|
| Rule 21 becomes: | | Rule 21 becomes: |
| * <math>D(a, b, c) --> D(a, b-1, 2^{b+5}-3)</math> | | * <math>D(a, b, c)</math> --> <math>D(a, b-1, 2^{b+4} \times 3 -5)</math> |
| * <math>D_1(a, b, c) --> D_1(a, b-1, 2^{b+5}-3)</math> | | * <math>D_1(a, b, c)</math> --> <math>D_1(a, b-1, 2^{b+4} \times 3 -5)</math> |
|
| |
|
| Rule 23 becomes: | | Rule 23 becomes: |
| * <math>D(a, 0, c) --> D(a-3, 2c+11, 1)</math> | | * D(a, 0, c) --> D(a-3, 2c+11, 1) |
| * <math>D_1(a, 0, c) --> D_1(a-3, 2c+11, 1)</math> | | * D_1(a, 0, c) --> D_1(a-3, 2c+11, 1) |
|
| |
|
| Rule 24 becomes: | | Rule 24 becomes: |
| * <math>D(0, 0, c) --> D(c+1, 3, 1)</math> | | * D(0, 0, c) --> D(c+1, 3, 1) |
|
| |
|
| Rule 25 becomes: | | Rule 25 becomes: |
| * <math>D(2, 0, c) --> D(2c+8, 3, 1)</math> | | * D(2, 0, c) --> D(2c+8, 3, 1) |
|
| |
|
| Rule 26 becomes: | | Rule 26 becomes: |
| * <math>D_1(1, 0, c) --> D_1(2c+7, 3, 1)</math> | | * D_1(1, 0, c) --> D_1(2c+7, 3, 1) |
|
| |
|
| Rule 27 becomes: | | Rule 27 becomes: |
| * <math>D_1(0, 0, c) --> D(2c+5, 3, 1)</math> | | * D_1(0, 0, c) --> D(2c+5, 3, 1) |
|
| |
|
| Rule 28 becomes: | | Rule 28 becomes: |
Line 544: |
Line 83: |
|
| |
|
| By repeating rule 21, a stronger rule can be constructed: | | By repeating rule 21, a stronger rule can be constructed: |
| * <math>D(a, b, c) --> D(a, 0, f_1^{b}(c))</math> | | * <math>D(a, b, c)</math> --> <math>D(a, 0, f_1^{b}(c))</math> |
| * <math>D_1(a, b, c) --> D1(a, 0, f_1^{b}(c))</math> | | * <math>D_1(a, b, c)</math> --> <math>D_1(a, 0, f_1^{b}(c))</math> |
|
| |
|
| If a is greater than or equal to 3: | | If a is greater than or equal to 3: |
| <math>D(a, 0, c) --> D(a-3, 2c+11, 1) --> D(a-3, 0, f_1^{2c+11}(1))</math> | | <math>D(a, 0, c)</math> --> <math>D(a-3, 2c+11, 1)</math> --> <math>D(a-3, 0, f_1^{2c+11}(1))</math> |
| =<math>D(a-3, 0, f_2(1,c))</math> | | =<math>D(a-3, 0, f_2(1,c))</math> |
| * <math>D(a, 0, c) --> D(a-3, 0, f_1^{2c+11}(1))</math> | | * <math>D(a, 0, c)</math> --> <math>D(a-3, 0, f_1^{2c+11}(1))</math> |
|
| |
|
| This rule can also be repeated, also note that <math>f_1^{2c+11}(1) = f_2(1,c)</math> and <math>f_1^{2 \times f_2(a,b) + 11}(1) = f_2(a+1,b)</math>: | | This rule can also be repeated, also note that <math>f_1^{2c+11}(1) = f_2(1,c)</math> and <math>f_1^{2 \times f_2(a,b) + 11}(1) = f_2(a+1,b)</math>: |
|
| |
|
| * <math>D(3k+d, 0, c) --> D(d, 0, f_2(k, c))</math> | | * <math>D(3k+d, 0, c)</math> --> <math>D(d, 0, f_2(k, c))</math> |
| * <math>D_1(3k+d, 0, c) --> D_1(d, 0, f_2(k, c))</math> | | * <math>D_1(3k+d, 0, c)</math> --> <math>D_1(d, 0, f_2(k, c))</math> |
| | |
| | The TM starts in configuration D(2, 2, 1). |
|
| |
|
| ==Trajectory==
| |
| <pre>
| |
| S=0: 0^inf A> 0^inf
| |
| S=5: 0^inf <A (11)^1 0^inf
| |
| S=6: 0^inf 1 B> (11)^1 0^inf
| |
| S=8: 0^inf 1 (11)^1 B> 0^inf
| |
| S=9: 0^inf 1 (11)^1 <B 2 0^inf
| |
| S=10: 0^inf 1 (11)^1 B> 2 0^inf
| |
| S=11: 0^inf 1 (11)^1 <C 1 0^inf
| |
| S=12: 0^inf (11)^1 <A (11)^1 0^inf
| |
| S=23: 0^inf 1 <A (11)^2 2 0^inf
| |
| S=38: 0^inf <A (11)^3 2^2 0^inf
| |
| S=39: 0^inf 1 B> (11)^3 2^2 0^inf
| |
| S=45: 0^inf 1 (11)^3 B> 2^2 0^inf
| |
| S=46: 0^inf 1 (11)^3 <C 1 2 0^inf
| |
| S=47: 0^inf (11)^3 <A (11)^1 2 0^inf
| |
| S=58: 0^inf 1 (11)^2 <A (11)^2 2^2 0^inf
| |
| S=59: 0^inf 1 (11)^2 D> (11)^2 2^2 0^inf
| |
| S=63: 0^inf 1 (11)^2 (21)^2 D> 2^2 0^inf
| |
| S=65: 0^inf 1 (11)^2 (21)^2 2^2 D> 0^inf
| |
| S=68: 0^inf 1 (11)^2 (21)^2 2^2 <B 2^2 0^inf
| |
| S=69: 0^inf 1 (11)^2 (21)^2 2 <C 1 2^2 0^inf
| |
| S=70: 0^inf (11)^2 (12)^2 1 <D (11)^1 2^2 0^inf
| |
| --> 0^inf (11)^2 (12)^2 2 (12)^0 2 1 <D (11)^1 0^inf
| |
| =0^inf (11)^2 (12)^2 2^2 1 <D (11)^1 0^inf
| |
| = D(2, 2, 1)
| |
| So, the TM starts in configuration D(2, 2, 1).
| |
| </pre>
| |
| D(2, 2, 1) --> | | D(2, 2, 1) --> |
|
| |
|
| <math>D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(61))</math> | | <math>D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(91))</math> |
| | |
| <math>e_1 = f_1(61) = 2^{66}-3</math>
| |
| | |
| --><math>D_1(2e_1+8, 3, 1) --> D_1(2e_1+8, 0, f_1^{2}(61))</math>
| |
| | |
| <math>e_2 = 2^{67} +2</math>
| |
| <pre>
| |
| 2^67 +2 mod 3 = ?
| |
| 2^2k mod 3 = 1
| |
| 2^2k+1 mod 3 = 2
| |
| 2^67 mod 3 = 2 --> +2 = 4; 4 mod 3 = 1
| |
| </pre>
| |
| <math>D_1(e_2, 0, f_1^{2}(61))</math>
| |
|
| |
|
| --> <math>D_1(1,0,f_2(\frac{e_2-1} 3, f_1^{2}(61)))</math>
| | <math>e_1 = f_1(91) = 2^{95} \times 3 -5</math> |
|
| |
|
| <math>e_3 = f_2(\frac{e_2-1} 3, f_1^{2}(61))</math>
| |
| <pre> | | <pre> |
| f_1(2k+1) = 2^2k+6-3 | | f_1(n) = 2^(n+4)*3 - 5 |
| Note that 2k+6 is of the form 2k, and that the whole expression is of the form 2k+1. | | Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1. |
| This means that any f_1^a(2k+1) = some f_1^a-1(2k+1)
| | Next, 3k+1 mod 3 = 1 |
| Now consider that 2^2k mod 3 = 1 and 2^2k+1 mod 3 = 2
| | So f_1(n) mod 3 = 1 |
| f_1(2k+1) = 2^2k+6-3
| | Thus f_1^a(n) mod 3 = 1 |
| Note that 2k + 6 is of the form 2k, meaning that 2^2k+6 mod 3 = 1
| |
| The -3 will not affect the Modulus here, as it is a full cycle back to 1.
| |
| Thus f_1(2k+1) mod 3 = 1, and, by earlier f_1^a(2k+1) mod 3 = 1
| |
| f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1) | | f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1) |
| Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(2k+1) | | Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n) |
| Thus f_2(a,b) mod 3 = 1 | | Thus f_2(a,b) mod 3 = 1 |
| </pre> | | </pre> |
|
| |
|
| <math>D_1(1,0,e_3)</math> | | <math>D(2, 0, e_1)</math> |
|
| |
|
| <math>e_3 mod 3 = 1</math> | | --><math>D_1(2e_1+8, 3, 1)</math> --> <math>D_1(2e_1+8, 0, f_1^{2}(91))</math> |
|
| |
|
| --> <math>D_1(2e_3+7, 3, 1) --> D_1(2e_3+7, 0, f_1^{2}(61))</math> | | e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1 |
|
| |
|
| 2e_3 + 7
| | <math>D_1(2e_1+8, 0, f_1^{2}(91))</math> |
|
| |
|
| Modulus: 2 + 7 --> 9 mod 3 = 0
| | --> <math>D_1(1,0,f_2(\frac{2e_1+7} 3, f_1^{2}(91)))</math> |
|
| |
|
| --> <math>D_1(0, 0, f_2(\frac{2e_3+7} 3, f_1^{2}(61)))</math>
| | <math>e_2 = f_2(\frac{2e_1+7} 3, f_1^{2}(91))</math> |
|
| |
|
| <math>e_4 = f_2(\frac{2e_3+7} 3, f_1^2{2}(61))</math> | | <math>D_1(1,0,e_3)</math> |
|
| |
|
| | <math>e_2 mod 3 = 1</math> |
|
| |
|
| <math>D_1(0, 0, e_4)</math> | | --> <math>D_1(2e_2+7, 3, 1)</math> --> <math>D_1(2e_2+7, 0, f_1^{2}(91))</math> |
|
| |
|
| --> <math>D(2e_4+5, 3, 1) --> D(2e_4+5, 0, f_1^{2}(61))</math>
| | 2e_3 + 7 |
|
| |
|
| e_4 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1
| | Modulus: 2 + 7 --> 9 mod 3 = 0 |
|
| |
|
| --> <math>D(1, 0, f_2(\frac{2e_4+4} 3, f_1^{2}(61)))</math> | | --> <math>D_1(0, 0, f_2(\frac{2e_2+7} 3, f_1^{2}(91)))</math> |
|
| |
|
| <math>e_5 = f_2(\frac{2e_4+4} 3, f_1^{2}(61))</math> | | <math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math> |
|
| |
|
|
| |
|
| <math>D(1, 0, e_5)</math> | | <math>D_1(0, 0, e_3)</math> |
|
| |
|
| --> halts with score <math>4e_5 + 18</math>. | | --> <math>D(2e_3+5, 3, 1)</math> --> <math>D(2e_3+5, 0, f_1^{2}(91))</math> |
|
| |
|
| ==Approximate Score== | | e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1 |
| <math>4e_5 + 18</math>
| |
|
| |
|
| <math>e_5 = f_2(\frac{2e_4+4} 3, f_1^{2}(61))</math> | | --> <math>D(1, 0, f_2(\frac{2e_3+4} 3, f_1^{2}(91)))</math> |
|
| |
|
| <math>e_4 = f_2(\frac{2e_3+7} 3, f_1^{2}(61))</math> | | <math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math> |
|
| |
|
| <math>e_3 = f_2(\frac{e_2-1} 3, f_1^{2}(61))</math>
| |
|
| |
|
| <math>e_2 = 2^{67} +2</math> | | <math>D(1, 0, e_4)</math> |
|
| |
|
| <math>f_1(n) = 2^{n+5}-3</math> | | --> halts with score <math>4e_4 + 18</math>. |
|
| |
|
| <math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where<math>f_2(0, b) = b</math>
| | This can be bounded by: |
|
| |
|
| TODO
| | <math>2 \uparrow^{4} 5 < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.92 \times 10^{28}) < e_4 < \sigma < S < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.93 \times 10^{28})</math> |
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD
(bbch) is a pentational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over
, making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score.
Pavel listed the halting tape as:
1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19))
Analysis by Polygon
S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S A> 0^2 S --> S <A 1^2 S [+5 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]
7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps]
9. S D> 0^2 S --> S <B 2^2 S [+3 steps]
10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps]
11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps]
12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps]
13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps]
14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps]
15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps]
16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps]
17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf
18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf
19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf
20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf
21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf
22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf
23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let
Let
, where
Rule 21 becomes:
--> 
--> 
Rule 23 becomes:
- D(a, 0, c) --> D(a-3, 2c+11, 1)
- D_1(a, 0, c) --> D_1(a-3, 2c+11, 1)
Rule 24 becomes:
- D(0, 0, c) --> D(c+1, 3, 1)
Rule 25 becomes:
- D(2, 0, c) --> D(2c+8, 3, 1)
Rule 26 becomes:
- D_1(1, 0, c) --> D_1(2c+7, 3, 1)
Rule 27 becomes:
- D_1(0, 0, c) --> D(2c+5, 3, 1)
Rule 28 becomes:
- D(1, 0, c) --> halt with score 4c + 18
By repeating rule 21, a stronger rule can be constructed:
--> 
--> 
If a is greater than or equal to 3:
-->
-->
=
--> 
This rule can also be repeated, also note that
and
:
--> 
--> 
The TM starts in configuration D(2, 2, 1).
D(2, 2, 1) -->
f_1(n) = 2^(n+4)*3 - 5
Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1.
Next, 3k+1 mod 3 = 1
So f_1(n) mod 3 = 1
Thus f_1^a(n) mod 3 = 1
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1)
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n)
Thus f_2(a,b) mod 3 = 1
-->
-->
e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1
-->
-->
-->
2e_3 + 7
Modulus: 2 + 7 --> 9 mod 3 = 0
-->
-->
-->
e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1
-->
--> halts with score
.
This can be bounded by: