User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD: Translation of rules into functions
Polygon (talk | contribs)
Undo revision 5333 by Polygon (talk) removed skelet 17 again
Tag: Undo
 
(50 intermediate revisions by the same user not shown)
Line 1: Line 1:
={{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}=
{machine|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}}
{| class="wikitable"
{{TM|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}} is a [[BB(6)]] [[holdout]] TM.
|+
 
!
==Analysis==
!0
 
!1
Early rules:
!2
|-
|A
|1RB
|1RD
|1LC
|-
|B
|2LB
|1RB
|1LC
|-
|C
|1RZ
|1LA
|1LD
|-
|D
|2RB
|2RA
|2RD
|}
<pre>
<pre>
S is any tape configuration
S is any tape configuration
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S 1 B> 0 S --> S <A 1^2 S [+4 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
  S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
  S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]
7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps]
by:
S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 (12)^b 1 B> 0 S
--> S (12)^a 2 (12)^b <A (11) S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S
--> S (12)^a-1 2 A> (11)^b+2 S
--> S (12)^a-1 2 (12)^b+2 A> S
8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps]
Obtained by repeating rule 8.
9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps]
by:
S (12)^a <D (11)^b 0^inf
--> S (12)^a D> (11)^b 0^inf
--> S (12)^a (21)^b D> 0^inf
--> S (12)^a (21)^b 2 B> 0^inf
--> S (12)^a (21)^b 2 <B 2 0^inf
--> S (12)^a (21)^b <C 1 2 0^inf
--> S (12)^a <C (11)^b 1 2 0^inf
--> S (12)^a-1 1 <D (11)^b+1 2 0^inf
--> S (12)^a-1 2 A> (11)^b+1 2 0^inf
--> S (12)^a-1 2 (12)^b+1 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+1 <C 1 0^inf
--> S (12)^a-1 2 (12)^b 1 <D 11 0^inf
--> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf
--> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf
--> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf
--> S (12)^a-1 2^2 <A (11)^2b+2 0^inf
--> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf
--> S (12)^a-1 <D (11)^2b+3 0^inf


10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
1. S 0^a <B S --> S <B 1^a S [+a steps]
Obtained by repeating rule 9.
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
 
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps]
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
by:
  S (11)^a <A S --> S <A (11)^a S [+2a steps]
S (11)^a <D (11)^b 0^inf
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
--> S (11)^a-1 1 2 A> (11)^b 0^inf
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)
--> S (11)^a-1 (12)^b+1 A> 0^inf
--> S (11)^a-1 <A (11)^b+2 0^inf
--> S (11)^a-1 D> (11)^b+2 0^inf
--> S (11)^a-1 (21)^b+2 D> 0^inf
--> S (11)^a-1 (21)^b+2 2 B> 0^inf
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
Note that 1 (21)^k = (12)^k 1
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
</pre>
</pre>
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
* Rule 10: A(a, b, c) --> <math>A(a,0,2^{b} \times c + 2^{b} \times 3 - 3)</math> which becomes <math>A(a,0,2^{b+1} \times 3 - 3)</math> if c = 3.
* Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)
Further: let <math>f(n) = 2^{n+1} \times 3</math>
* If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3)


* A(2k + d, 0, c) --> <math>A(d, f^{k-1}(c+3), 3)</math>
Later rules:
<pre>
<pre>
The TM enters configuration A(19, 2, 3) after 799 steps with tape:
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
</pre>
==Trajectory==
A(19, 2, 3) --> A(19, 0, 21) --> <math>A(1, f^{8}(24), 3)</math>


--> <math>A(1, 0, f^{9}(24) - 3)</math>
b mod 2 = 0:
 
  b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
Let's have <math> f^{9}(24) - 3</math> = m.
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
<pre>
  b = 0:
Final trajectory:
      a mod 2 = 0:
0^inf 2 1 (11)^1 <D (11)^m 0^inf
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
--> 0^inf 2 1 1 2 A> (11)^m 0^inf
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
--> 0^inf 2 1 (12)^m+1 A> 0^inf
        a = 0: A(0, 0, c, ...) --> spin out
--> 0^inf 2 1 <A (11)^m+2 0^inf
      a mod 2 = 1:
--> 0^inf 2 1 D> (11)^m+2 0^inf
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
--> 0^inf (21)^m+3 D> 0^inf
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
--> 0^inf (21)^m+3 2 B> 0^inf
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
--> 0^inf (21)^m+3 2 <B 2 0^inf
b mod 2 = 1:
--> 0^inf (21)^m+3 <C (12)^1 0^inf
  b ≥ 3:
--> 0^inf <C (11)^m+3 (12)^1 0^inf
      a mod 2 = 0:
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
Score = 2m + 9
        a = 0:
 
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
Score calculated in HyperCalc:
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
(10^)^8 30,302,671.815163
      a mod 2 = 1:
Or in tetration: 10^^10.873987 (truncated)
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
        a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
</pre>
A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.


=1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD=
'''Accelerated rules:'''
{| class="wikitable"
|+
!
!0
!1
!2
|-
|A
|1RB
|1RD
|1LC
|-
|B
|2LB
|1RB
|1LC
|-
|C
|1RZ
|1LA
|1LD
|-
|D
|0RB
|2RA
|2RD
|}
<pre>
<pre>
S is any tape configuration
R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)
1. S D> 2^a S --> S 2^a D> S [+a steps]
2. S B> 1^a S --> S 1^a B> S [+a steps]
3. S A> 0^2 S --> S <A 1^2 S [+5 steps]
4. S D> (11)^a S --> S (21)^a D> S [+2a steps]
  S A> (11)^a S --> S (12)^a A> S [+2a steps]
5. S (21)^a <C S --> S <C (11)^a S [+2a steps]
  S (12)^a <A S --> S <A (11)^a S [+2a steps]
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps]


7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps]
A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
by:
S A> (11)^1 2^b S
A(0, 2k+1, c, ...)
--> S (12)^1 A> 2^b S
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> S (12)^1 <C 1 2^b-1 S
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> S 1 <D (11)^1 2^b-1 S
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]
--> S 2 A> (11)^1 2^b-1 S
8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps]
by repetition of rule 7


9. S D> 0^2 S --> S <B 2^2 S [+3 steps]
A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1


10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps]
A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
by:
S 2 <D (11)^a 0^2 S
A(0, 2k+1, c, ...)
--> S 2 D> (11)^a 0^2 S
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> S 2 (21)^a D> 0^2 S
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> S 2 (21)^a <B 2^2 S
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]
--> S 2 (21)^a B> 2^2 S
</pre>
--> S 2 (21)^a <C 1 2 S
--> S 2 <C (11)^a 1 2 S
--> S <D (11)^a+1 2 S


11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps]
'''Using the accelerated rules:'''
by:
S 2 <D (11)^a 2 0^2 S
--> S 2 D> (11)^a 2 0^2 S
--> S 2 (21)^a D> 2 0^2 S
--> S 2 (21)^a 2 D> 0^2 S
--> S 2 (21)^a 2 <B 2^2 S
--> S 2 (21)^a <C 1 2^2 S
--> S 2 <C (11)^a 1 2^2 S
--> S <D (11)^a+1 2^2 S


12. S  1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps]
<pre>
by:
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
S 1^a <A (11)^b 0^2 S
--> S 1^a D> (11)^b 0^2 S
--> S 1^a (21)^b D> 0^2 S
--> S 1^a (21)^b <B 2^2 S
--> S 1^a (21)^b B> 2^2 S
--> S 1^a (21)^b <C 1 2 S
--> S 1^a <C (11)^b 1 2 S
--> S 1^a-1 <A (11)^b+1 2 S
 
13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps]
by:
S 1^a <A (11)^b 2 0^2 S
--> S 1^a D> (11)^b 2 0^2 S
--> S 1^a (21)^b D> 2 0^2 S
--> S 1^a (21)^b 2 D> 0^2 S
--> S 1^a (21)^b 2 <B 2^2 S
--> S 1^a (21)^b <C 1 2^2 S
--> S 1^a <C (11)^b 1 2^2 S
--> S 1^a-1 <A (11)^b+1 2^2 S
 
14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps]
by:
S (12)^a 1 <D (11)^b 0^2 S
--> S (12)^a 2 A> (11)^b 0^2 S
--> S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S
 
15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps]
by repetition of rule 14
 
16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf [+10b +26 steps]
by:
S (12)^a 2 1 <D (11)^b 0^inf
--> S (12)^a 2^2 A> (11)^b 0^inf
--> S (12)^a 2^2 (12)^b A> 0^inf
--> S (12)^a 2^2 <A (11)^b+1 0^inf
--> S (12)^a 2 <C 1 (11)^b+1 0^inf
--> S (12)^a <D (11)^b+2 0^inf
--> S (12)^a-1 1 <D (11)^b+2 2 0^inf by rule 10
--> S (12)^a-1 2 A> (11)^b+2 2 0^inf
--> S (12)^a-1 2 (12)^b+2 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+2 <C 1 0^inf
--> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf


17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+3 0^inf [+4a^2 +4ab +6b +22 steps]
b mod 2 = 0:
by:
  b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
S (12)^a 2 1 <D (11)^b 0^inf
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
--> S (12)^a-1 2 (12)^b+1 1 <D (11)^1 0^inf
  b = 0:
--> S (12)^a-1 2 1 <D (11)^2b+3 0^inf
      a mod 2 = 0:
 
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*3-3 0^inf
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
by repetition of rule 17
        a = 0: unreachable
 
      a mod 2 = 1:
---
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
by:
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
S (12)^a 2 1 <D (11)^b 2 0^inf
b mod 2 = 1:
--> S (12)^a 2^2 A> (11)^b 2 0^inf
  b ≥ 3:
--> S (12)^a 2^2 (12)^b A> 2 0^inf
      a mod 2 = 0:
--> S (12)^a 2^2 (12)^b <C 1 0^inf
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
--> S (12)^a 2^2 (12)^b-1 1 <D (11)^1 0^inf
        a = 0:
--> S (12)^a 2^2 1 <D (11)^2b-1 0^inf by rule 15
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
 
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf
            b = 3: unreachable
by:
      a mod 2 = 1:
S (12)^a 1 <D (11)^b 2 0^inf
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
--> S (12)^a 2 A> (11)^b 2 0^inf
        a = 1: unreachable
--> S (12)^a 2 (12)^b A> 2 0^inf
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
--> S (12)^a 2 (12)^b <C 1 0^inf
--> S (12)^a 2 (12)^b-1 1 <D (11)^1 0^inf
--> S (12)^a 2 1 <D (11)^2b-1 0^inf by rule 15
 
21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+5)-3 0^inf
by:
S (12)^a 2^2 1 <D (11)^b 0^inf
--> S (12)^a 2^3 A> (11)^b 0^inf
--> S (12)^a 2^3 (12)^b A> 0^inf
--> S (12)^a 2^3 <A (11)^b+1 0^inf
--> S (12)^a 2^2 <C 1 (11)^b+1 0^inf
--> S (12)^a 2 <D (11)^b+2 0^inf
--> S (12)^a <D (11)^b+3 2 0^inf by rule 10
--> S (12)^a-1 1 <D (11)^b+4 2^2 0^inf by rule 11
--> S (12)^a-1 2 A> (11)^b+4 2^2 0^inf
--> S (12)^a-1 2 (12)^b+4 A> 2^2 0^inf
--> S (12)^a-1 2 (12)^b+4 <C 1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (12)^a-1 2 (12)^b+3 2 1 <D (11)^1 0^inf by rule 20
--> S (12)^a-1 2^2 1 <D (11)^(2^(b+3)*1)+(2^(b+3)*3)-3 0^inf by rule 18
= S (12)^a-1 2^2 1 <D (11)^(2^(b+5)-3) 0^inf
 
22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf
by:
S 1 <D (11)^b 2^2 0^inf
--> S 2 A> (11)^b 2^2 0^inf
--> S 2 (12)^b A> 2^2 0^inf
--> S 2 (12)^b <C 1 2 0^inf
--> S 2 (12)^b-1 1 <D (11)^1 2 0^inf
--> S 2 (12)^b-1 2 1 <D (11)^1 0^inf by rule 20
 
23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
by:
S (11)^a 2^2 1 <D (11)^b 0^inf
--> S (11)^a 2^3 A> (11)^b 0^inf
--> S (11)^a 2^3 (12)^b A> 0^inf
--> S (11)^a 2^3 <A (11)^b+1 0^inf
--> S (11)^a 2^2 <C 1 (11)^b+1 0^inf
--> S (11)^a 2 <D (11)^b+2 0^inf
--> S (11)^a <D (11)^b+3 2 0^inf by rule 10
--> S (11)^a-1 1 2 A> (11)^b+3 2 0^inf
--> S (11)^a-1 (12)^b+4 A> 2 0^inf
--> S (11)^a-1 (12)^b+4 <C 1 0^inf
--> S (11)^a-1 (12)^b+3 1 <D (11)^1 0^inf
--> S (11)^a-1 1 <D (11)^2b+7 0^inf by rule 15
--> S (11)^a-1 2 A> (11)^2b+7 0^inf
--> S (11)^a-1 2 (12)^2b+7 A> 0^inf
--> S (11)^a-1 2 <A (11)^2b+8 0^inf
--> S (11)^a-1 <C 1 (11)^2b+8 0^inf
--> S (11)^a-2 1 <A (11)^2b+9 0^inf
--> S (11)^a-2 <A (11)^2b+10 2 0^inf by rule 12
--> S (11)^a-3 1 <A (11)^2b+11 2^2 0^inf by rule 13
--> S (11)^a-3 1 D> (11)^2b+11 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 D> 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 2^2 D> 0^inf
--> S (11)^a-3 1 (21)^2b+11 2^2 <B 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 2 <C 1 2^2 0^inf
--> S (11)^a-3 1 (21)^2b+11 <D (11)^1 2^2 0^inf
= S (11)^a-3 (12)^2b+11 1 <D (11)^1 2^2 0^inf
--> S (11)^a-3 (12)^2b+11 2 (12)^0 2 1 <D (11)^1 0^inf
= S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf
 
24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 2^2 1 <D (11)^c 0^inf
--> 0^inf 2^3 A> (11)^c 0^inf
--> 0^inf 2^3 (12)^c A> 0^inf
--> 0^inf 2^3 <A (11)^c+1 0^inf
--> 0^inf 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 2 <D (11)^c+2 0^inf
--> 0^inf <D (11)^c+3 2 0^inf by rule 10
--> 0^inf B> (11)^c+3 2 0^inf
--> 0^inf (11)^c+3 B> 2 0^inf
--> 0^inf (11)^c+3 <C 1 0^inf
--> 0^inf (11)^c+2 1 <A (11)^1 0^inf
--> 0^inf (11)^c+2 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^c+1 1 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^c+1 1 D> (11)^3 2^2 0^inf
--> 0^inf (11)^c+1 1 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^c+1 1 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^c+1 1 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf (11)^c+1 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
= 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf
 
25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf (11)^2 2^2 1 <D (11)^c 0^inf
--> 0^inf (11)^2 2^3 A> (11)^c 0^inf
--> 0^inf (11)^2 2^3 (12)^c A> 0^inf
--> 0^inf (11)^2 2^3 <A (11)^c+1 0^inf
--> 0^inf (11)^2 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^2 2 <D (11)^c+2 0^inf
--> 0^inf (11)^2 <D (11)^c+3 2 0^inf
--> 0^inf (11)^1 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 (12)^c+4 A> 2 0^inf
--> 0^inf (11)^1 (12)^c+4 <C 1 0^inf
--> 0^inf (11)^1 (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf (11)^1 1 <D (11)^2c+7 0^inf by rule 15
--> 0^inf (11)^1 2 A> (11)^2c+7 0^inf
--> 0^inf (11)^1 2 (12)^2c+7 A> 0^inf
--> 0^inf (11)^1 2 <A (11)^2c+8 0^inf
--> 0^inf (11)^1 <C 1 (11)^2c+8 0^inf
--> 0^inf 1 <A (11)^2c+9 0^inf
--> 0^inf <A (11)^2c+10 2 0^inf by rule 12
--> 0^inf 1 B> (11)^2c+10 2 0^inf
--> 0^inf 1 (11)^2c+10 B> 2 0^inf
--> 0^inf 1 (11)^2c+10 <C 1 0^inf
--> 0^inf (11)^2c+10 <A (11)^1 0^inf
--> 0^inf (11)^2c+9 1 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+9 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+9 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^2c+9 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+9 (21)^3 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+8 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf by rule 22
--> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf
 
26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 (11)^1 2^3 A> (11)^c 0^inf
--> 0^inf 1 (11)^1 2^3 (12)^c A> 0^inf
--> 0^inf 1 (11)^1 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 (11)^1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 (11)^1 2 <D (11)^c+2 0^inf
--> 0^inf 1 (11)^1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf (11)^1 2 A> (11)^c+3 2 0^inf
--> 0^inf (11)^1 2 (12)^c+3 A> 2 0^inf
--> 0^inf (11)^1 2 (12)^c+3 <C 1 0^inf
--> 0^inf (11)^1 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf (11)^1 2 1 <D (11)^2c+5 0^inf by rule 15
--> 0^inf (11)^1 2^2 A> (11)^2c+5 0^inf
--> 0^inf (11)^1 2^2 (12)^2c+5 A> 0^inf
--> 0^inf (11)^1 2^2 <A (11)^2c+6 0^inf
--> 0^inf (11)^1 2 <C 1 (11)^2c+6 0^inf
--> 0^inf (11)^1 <D (11)^2c+7 0^inf
--> 0^inf 1 2 A> (11)^2c+7 0^inf
--> 0^inf (12)^2c+8 A> 0^inf
--> 0^inf <A (11)^2c+9 0^inf
--> 0^inf 1 B> (11)^2c+9 0^inf
--> 0^inf 1 (11)^2c+9 B> 0^inf
--> 0^inf 1 (11)^2c+9 <B 2 0^inf
--> 0^inf 1 (11)^2c+9 B> 2 0^inf
--> 0^inf 1 (11)^2c+9 <C 1 0^inf
--> 0^inf 1 (11)^2c+8 1 <A (11)^1 0^inf
--> 0^inf 1 (11)^2c+8 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+8 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+8 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+8 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+8 (21)^3 2^2 D> 0^inf
--> 0^inf (11)^2c+8 (21)^3 2^2 <B 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 1 <D (11)^1 2^2 0^inf
--> 0^inf 1 (11)^2c+7 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
= 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf
 
27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
by:
0^inf 1 2^2 1 <D (11)^c 0^inf
--> 0^inf 1 2^3 A> (11)^c 0^inf
--> 0^inf 1 2^3 (12)^c A> 0^inf
--> 0^inf 1 2^3 <A (11)^c+1 0^inf
--> 0^inf 1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf 1 2 <D (11)^c+2 0^inf
--> 0^inf 1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf 2 A> (11)^c+3 2 0^inf
--> 0^inf 2 (12)^c+3 A> 2 0^inf
--> 0^inf 2 (12)^c+3 <C 1 0^inf
--> 0^inf 2 (12)^c+2 1 <D (11)^1 0^inf
--> 0^inf 2 1 <D (11)^2c+5 0^inf
--> 0^inf 2^2 A> (11)^2c+5 0^inf
--> 0^inf 2^2 (12)^2c+5 A> 0^inf
--> 0^inf 2^2 <A (11)^2c+6 0^inf
--> 0^inf 2 <C 1 (11)^2c+6 0^inf
--> 0^inf <D (11)^2c+7 0^inf
--> 0^inf B> (11)^2c+7 0^inf
--> 0^inf (11)^2c+7 B> 0^inf
--> 0^inf (11)^2c+7 <B 2 0^inf
--> 0^inf (11)^2c+7 B> 2 0^inf
--> 0^inf (11)^2c+7 <C 1 0^inf
--> 0^inf (11)^2c+6 1 <A (11)^1 0^inf
--> 0^inf (11)^2c+6 <A (11)^2 2 0^inf by rule 12
--> 0^inf (11)^2c+5 1 <A (11)^3 2^2 0^inf by rule 13
--> 0^inf (11)^2c+5 1 D> (11)^3 2^2 0^inf
--> 0^inf (11)^2c+5 1 (21)^3 D> 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2^2 D> 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2^2 <B 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 2 <C 1 2^2 0^inf
--> 0^inf (11)^2c+5 (12)^3 1 <D (11)^1 2^2 0^inf by rule 22
--> 0^inf (11)^2c+5 (12)^3 2 (12)^0 2 1 <D (11)^1 0^inf
= 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf
 
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
by:
0^inf (11)^1 2^2 1 <D (11)^c 0^inf
--> 0^inf (11)^1 2^3 A> (11)^c 0^inf
--> 0^inf (11)^1 2^3 (12)^c A> 0^inf
--> 0^inf (11)^1 2^3 <A (11)^c+1 0^inf
--> 0^inf (11)^1 2^2 <C 1 (11)^c+1 0^inf
--> 0^inf (11)^1 2 <D (11)^c+2 0^inf
--> 0^inf (11)^1 <D (11)^c+3 2 0^inf by rule 10
--> 0^inf 1 2 A> (11)^c+3 2 0^inf
--> 0^inf (12)^c+4 A> 2 0^inf
--> 0^inf (12)^c+4 <C 1 0^inf
--> 0^inf (12)^c+3 1 <D (11)^1 0^inf
--> 0^inf 1 <D (11)^2c+7 0^inf
--> 0^inf 2 A> (11)^2c+7 0^inf
--> 0^inf 2 (12)^2c+7 A> 0^inf
--> 0^inf 2 <A (11)^2c+8 0^inf
--> 0^inf <C 1 (11)^2c+8 0^inf
--> 0^inf 1 Z> 1 (11)^2c+8 0^inf
</pre>
</pre>
==Functions==
Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let D1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let <math>f_1(n) = 2^{n+5}-3</math>
Let <math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where<math>f_2(0, b) = b</math>
Rule 21 becomes:
* <math>D(a, b, c) --> D(a, b-1, 2^{b+5}-3)</math>
* <math>D_1(a, b, c) --> D_1(a, b-1, 2^{b+5}-3)</math>
Rule 23 becomes:
* <math>D(a, 0, c) --> D(a-3, 2c+11, 1)</math>
* <math>D_1(a, 0, c) --> D_1(a-3, 2c+11, 1)</math>
Rule 24 becomes:
* <math>D(0, 0, c) --> D(c+1, 3, 1)</math>
Rule 25 becomes:
* <math>D(2, 0, c) --> D(2c+8, 3, 1)</math>
Rule 26 becomes:
* <math>D_1(1, 0, c) --> D_1(2c+7, 3, 1)</math>
Rule 27 becomes:
* <math>D_1(0, 0, c) --> D(2c+5, 3, 1)</math>


Rule 28 becomes:
The TM starts in configuration A(0, 2, 0) after 7 steps.
* D(1, 0, c) --> halt with score 4c + 18


TODO: Rules used to derive these
[Category:BB(6)]]
* <math>D(a, b, c) --> D(a, 0, f_1^{b}(c)</math> by repetition of rule 21
* <math>D1(a, b, c) --> D1(a, 0, f_1^{b}(c)</math> by repetition of rule 21
* <math>D(3k + d, 0, c) --> D(d, 0, f_2(k, c))</math>

Latest revision as of 18:44, 4 December 2025

{machine|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}} 1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD (bbch) is a BB(6) holdout TM.

Analysis

Early rules:

S is any tape configuration

1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
   S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)

Later rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.

Accelerated rules:

R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)

A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]

A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1

A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]

Using the accelerated rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: unreachable
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: unreachable
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

The TM starts in configuration A(0, 2, 0) after 7 steps.

[Category:BB(6)]]