User:Polygon/Page for testing: Difference between revisions
(→{{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}: Added step counts) |
(→Placeholder: Removed the section) |
||
(50 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD|halt}} is a pentational halting [[BB(4,3)]] TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over <math>2 \uparrow^{4} 5</math>, making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score. | |||
{ | |||
Pavel listed the halting tape as: | |||
<pre> | |||
1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19)) | |||
</pre> | |||
==Analysis by Polygon== | |||
<pre> | <pre> | ||
S is any tape configuration | S is any tape configuration | ||
1. S D> 2^a S --> S 2^a D> S [+a steps] | 1. S D> 2^a S --> S 2^a D> S [+a steps] | ||
2. S B> 1^a S --> S 1^a B> S [+a steps] | 2. S B> 1^a S --> S 1^a B> S [+a steps] | ||
3. S | 3. S A> 0^2 S --> S <A 1^2 S [+5 steps] | ||
4. S D> (11)^a S --> S (21)^a D> S [+2a steps] | 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] | ||
S A> (11)^a S --> S (12)^a A> S [+2a steps] | S A> (11)^a S --> S (12)^a A> S [+2a steps] | ||
Line 38: | Line 18: | ||
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] | 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] | ||
7. S ( | 7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps] | ||
8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps] | |||
S ( | |||
--> S ( | 9. S D> 0^2 S --> S <B 2^2 S [+3 steps] | ||
--> S | |||
--> S | 10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps] | ||
11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps] | |||
--> S (12)^a-1 1 <D (11)^b+2 S | |||
--> S (12)^a-1 2 | 12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps] | ||
--> S (12)^a-1 2 (12)^b+2 | 13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps] | ||
14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps] | |||
15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps] | |||
16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps] | |||
17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf | |||
18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf | |||
19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf | |||
20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf | |||
21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf | |||
--> S (12)^a-1 2 | |||
22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf | |||
23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf | |||
24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf | |||
25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf | |||
26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf | |||
27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf | |||
28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf | |||
--> | |||
--> | |||
--> | |||
-- | |||
--> | |||
</pre> | </pre> | ||
Let | Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | ||
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf | |||
* | |||
Let <math>f_1(n) = 2^{n+4} \times 3 -5</math> | |||
Let <math>f_2(a,b) = f_1^{2 \times f_2(a-1, b) + 11}(1)</math>, where<math>f_2(0, b) = b</math> | |||
Rule 21 becomes: | |||
* <math>D(a, b, c)</math> --> <math>D(a, b-1, 2^{b+4} \times 3 -5)</math> | |||
* <math>D_1(a, b, c)</math> --> <math>D_1(a, b-1, 2^{b+4} \times 3 -5)</math> | |||
Rule 23 becomes: | |||
* D(a, 0, c) --> D(a-3, 2c+11, 1) | |||
* D_1(a, 0, c) --> D_1(a-3, 2c+11, 1) | |||
Rule 24 becomes: | |||
* D(0, 0, c) --> D(c+1, 3, 1) | |||
Rule 25 becomes: | |||
* D(2, 0, c) --> D(2c+8, 3, 1) | |||
Rule 26 becomes: | |||
* D_1(1, 0, c) --> D_1(2c+7, 3, 1) | |||
Rule 27 becomes: | |||
* D_1(0, 0, c) --> D(2c+5, 3, 1) | |||
Rule 28 becomes: | |||
* D(1, 0, c) --> halt with score 4c + 18 | |||
By repeating rule 21, a stronger rule can be constructed: | |||
* <math>D(a, b, c)</math> --> <math>D(a, 0, f_1^{b}(c))</math> | |||
* <math>D_1(a, b, c)</math> --> <math>D_1(a, 0, f_1^{b}(c))</math> | |||
If a is greater than or equal to 3: | |||
<math>D(a, 0, c)</math> --> <math>D(a-3, 2c+11, 1)</math> --> <math>D(a-3, 0, f_1^{2c+11}(1))</math> | |||
=<math>D(a-3, 0, f_2(1,c))</math> | |||
* <math>D(a, 0, c)</math> --> <math>D(a-3, 0, f_1^{2c+11}(1))</math> | |||
This rule can also be repeated, also note that <math>f_1^{2c+11}(1) = f_2(1,c)</math> and <math>f_1^{2 \times f_2(a,b) + 11}(1) = f_2(a+1,b)</math>: | |||
* <math>D(3k+d, 0, c)</math> --> <math>D(d, 0, f_2(k, c))</math> | |||
* <math>D_1(3k+d, 0, c)</math> --> <math>D_1(d, 0, f_2(k, c))</math> | |||
The TM starts in configuration D(2, 2, 1). | |||
D(2, 2, 1) --> | |||
<math>D(2, 0, f_1^{2}(1)) = D(2, 0, f_1(91))</math> | |||
<math>e_1 = f_1(91) = 2^{95} \times 3 -5</math> | |||
<pre> | <pre> | ||
f_1(n) = 2^(n+4)*3 - 5 | |||
Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1. | |||
Next, 3k+1 mod 3 = 1 | |||
So f_1(n) mod 3 = 1 | |||
Thus f_1^a(n) mod 3 = 1 | |||
f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1) | |||
Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n) | |||
Thus f_2(a,b) mod 3 = 1 | |||
</pre> | </pre> | ||
--> <math> | <math>D(2, 0, e_1)</math> | ||
--><math>D_1(2e_1+8, 3, 1)</math> --> <math>D_1(2e_1+8, 0, f_1^{2}(91))</math> | |||
e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1 | |||
<math>D_1(2e_1+8, 0, f_1^{2}(91))</math> | |||
--> <math>D_1(1,0,f_2(\frac{2e_1+7} 3, f_1^{2}(91)))</math> | |||
<math>e_2 = f_2(\frac{2e_1+7} 3, f_1^{2}(91))</math> | |||
<math>D_1(1,0,e_3)</math> | |||
<math>e_2 mod 3 = 1</math> | |||
--> <math>D_1(2e_2+7, 3, 1)</math> --> <math>D_1(2e_2+7, 0, f_1^{2}(91))</math> | |||
2e_3 + 7 | |||
Modulus: 2 + 7 --> 9 mod 3 = 0 | |||
--> <math>D_1(0, 0, f_2(\frac{2e_2+7} 3, f_1^{2}(91)))</math> | |||
<math>e_3 = f_2(\frac{2e_2+7} 3, f_1^{2}(91))</math> | |||
<math>D_1(0, 0, e_3)</math> | |||
--> <math>D(2e_3+5, 3, 1)</math> --> <math>D(2e_3+5, 0, f_1^{2}(91))</math> | |||
e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1 | |||
--> <math>D(1, 0, f_2(\frac{2e_3+4} 3, f_1^{2}(91)))</math> | |||
<math>e_4 = f_2(\frac{2e_3+4} 3, f_1^{2}(91))</math> | |||
( | |||
</ | |||
<math>D(1, 0, e_4)</math> | |||
--> halts with score <math>4e_4 + 18</math>. | |||
This can be bounded by: | |||
by: | |||
<math>2 \uparrow^{4} 5 < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.92 \times 10^{28}) < e_4 < \sigma < S < 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow (7.93 \times 10^{28})</math> | |||
</ |
Latest revision as of 15:55, 5 October 2025
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_0RB2RA2RD
(bbch) is a pentational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of over , making it the current BB(4,3) champion. Polygon analysed the TM by hand in October 2025, providing its score.
Pavel listed the halting tape as:
1 Z> 1^((2*<(<(<(16*2^(92) - 3); (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<(24*2^((24*2^(<(24*2^((24*2^(92) - 3)) - 2); (24*2^(b) - 4); 92>) - 3)) - 1); (24*2^(b) - 4); 2>) - 3)) - 11)> + 8)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 5)/3; (24*2^((24*2^(<(b + 10); (24*2^(b) - 4); 2>) - 3)) - 11); (24*2^((24*2^(<1; (24*2^(b) - 4); 2>) - 3)) - 11)> + 19))
Analysis by Polygon
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S [+a steps] 2. S B> 1^a S --> S 1^a B> S [+a steps] 3. S A> 0^2 S --> S <A 1^2 S [+5 steps] 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] S A> (11)^a S --> S (12)^a A> S [+2a steps] 5. S (21)^a <C S --> S <C (11)^a S [+2a steps] S (12)^a <A S --> S <A (11)^a S [+2a steps] 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] 7. S A> (11)^1 2^b S --> S 2 A> (11)^1 2^b-1 S [+5 steps] 8. S A> (11)^1 2^b S --> S 2^b A> (11)^1 S [+5b steps] 9. S D> 0^2 S --> S <B 2^2 S [+3 steps] 10. S 2 <D (11)^a 0^2 S --> S <D (11)^a+1 2 S [+4a +7 steps] 11. S 2 <D (11)^a 2 0^2 S --> S <D (11)^a+1 2^2 S [+4a +7 steps] 12. S 1^a <A (11)^b 0^2 S --> S 1^a-1 <A (11)^b+1 2 S [+4b +7 steps] 13. S 1^a <A (11)^b 2 0^2 S --> S 1^a-1 <A (11)^b+1 2^2 S [+4b +7 steps] 14. S (12)^a 1 <D (11)^b 0^2 S --> S (12)^a-1 1 <D (11)^b+2 [+4b +8 steps] 15. S (12)^a 1 <D (11)^b 0^inf --> S 1 <D (11)^b+2a 0^inf [+4a^2 +4ba + 4a steps] 16. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 (12)^b+2 1 <D (11)^1 0^inf [+10b +28 steps] 17. S (12)^a 2 1 <D (11)^b 0^inf --> S (12)^a-1 2 1 <D (11)^2b+5 0^inf 18. S (12)^a 2 1 <D (11)^b 0^inf --> S 2 1 <D (11)^(2^a)*b+(2^a)*5-5 0^inf 19. S (12)^a 2 1 <D (11)^b 2 0^inf --> S (12)^a 2^2 1 <D (11)^2b-1 0^inf 20. S (12)^a 1 <D (11)^b 2 0^inf --> S (12)^a 2 1 <D (11)^2b-1 0^inf 21. S (12)^a 2^2 1 <D (11)^b 0^inf --> S (12)^a-1 2^2 1 <D (11)^2^(b+4)*3-5 0^inf 22. S 1 <D (11)^b 2^2 0^inf --> S 2 (12)^b-1 2 1 <D (11)^1 0^inf 23. S (11)^a 2^2 1 <D (11)^b 0^inf --> S (11)^a-3 (12)^2b+11 2^2 1 <D (11)^1 0^inf 24. 0^inf 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^c+1 (12)^3 2^2 1 <D (11)^1 0^inf 25. 0^inf (11)^2 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+8 (12)^3 2^2 1 <D (11)^1 0^inf 26. 0^inf 1 (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 (11)^2c+7 (12)^3 2^2 1 <D (11)^1 0^inf 27. 0^inf 1 2^2 1 <D (11)^c 0^inf --> 0^inf (11)^2c+5 (12)^3 2^2 1 <D (11)^1 0^inf 28. 0^inf (11)^1 2^2 1 <D (11)^c 0^inf --> 0^inf 1 Z> 1 (11)^2c+8 0^inf
Let D(a, b, c) = 0^inf (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let D_1(a, b, c) = 0^inf 1 (11)^a (12)^b 2^2 1 <D (11)^c 0^inf
Let
Let , where
Rule 21 becomes:
- -->
- -->
Rule 23 becomes:
- D(a, 0, c) --> D(a-3, 2c+11, 1)
- D_1(a, 0, c) --> D_1(a-3, 2c+11, 1)
Rule 24 becomes:
- D(0, 0, c) --> D(c+1, 3, 1)
Rule 25 becomes:
- D(2, 0, c) --> D(2c+8, 3, 1)
Rule 26 becomes:
- D_1(1, 0, c) --> D_1(2c+7, 3, 1)
Rule 27 becomes:
- D_1(0, 0, c) --> D(2c+5, 3, 1)
Rule 28 becomes:
- D(1, 0, c) --> halt with score 4c + 18
By repeating rule 21, a stronger rule can be constructed:
- -->
- -->
If a is greater than or equal to 3: --> --> =
- -->
This rule can also be repeated, also note that and :
- -->
- -->
The TM starts in configuration D(2, 2, 1).
D(2, 2, 1) -->
f_1(n) = 2^(n+4)*3 - 5 Note that the times three means that this expression of of the form 3k - 5 which can be rewritten as 3(k-1)-2 which can again be rewritten as 3(k-2)+1. Next, 3k+1 mod 3 = 1 So f_1(n) mod 3 = 1 Thus f_1^a(n) mod 3 = 1 f_2(a,b) = f_1^(2*f_2(a-1,b)+11)(1) Note that f_1^(2*f_2(a-1,b)+11)(1) is also of the form f_1^a(n) Thus f_2(a,b) mod 3 = 1
--> -->
e_1 mod 3 = 1; 2*1 + 8 = 10 --> 10 mod 3 = 1
-->
--> -->
2e_3 + 7
Modulus: 2 + 7 --> 9 mod 3 = 0
-->
--> -->
e_3 mod 3 = 1; 2*1+5 = 7 --> 7 mod 3 = 1
-->
--> halts with score .
This can be bounded by: