User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Expansion
Polygon (talk | contribs)
Removed rule names
 
(74 intermediate revisions by the same user not shown)
Line 1: Line 1:
Placeholder
{{TM|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}} is a [[BB(6)]] [[holdout]] TM.
{{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}
 
==Analysis==
 
Early rules:
<pre>
<pre>
S is any tape configuration
S is any tape configuration
1. S D> 2^a S --> S 2^a D> S
2. S B> 1^a S --> S 1^a B> S
3. S 1 B> 0 S --> S <A 1^2 S
4. S D> (11)^a S --> S (21)^a D> S
  S A> (11)^a S --> S (12)^a A> S
5. S (21)^a <C S --> S <C (11)^a S
  S (12)^a <A S --> S <A (11)^a S
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S


7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S
1. S 0^a <B S --> S <B 1^a S [+a steps]
by:
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
S (12)^a 2 (12)^b A> 0^2 S
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
--> S (12)^a 2 (12)^b 1 B> 0 S
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
--> S (12)^a 2 (12)^b <A (11) S
  S (11)^a <A S --> S <A (11)^a S [+2a steps]
--> S (12)^a 2 <A (11)^b+1 S
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
--> S (12)^a <C 1 (11)^b+1 S
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)
--> S (12)^a-1 1 <D (11)^b+2 S
</pre>
--> S (12)^a-1 2 A> (11)^b+2 S
 
--> S (12)^a-1 2 (12)^b+2 A> S
Later rules:
<pre>
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
 
b mod 2 = 0:
  b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
  b = 0:
      a mod 2 = 0:
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
        a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
  b ≥ 3:
      a mod 2 = 0:
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
        a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
        a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.


8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf
'''Accelerated rules:'''
Obtained by repeating rule 8.
<pre>
R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)


9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf
A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
by:
S (12)^a <D (11)^b 0^inf
A(0, 2k+1, c, ...)
--> S (12)^a D> (11)^b 0^inf
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> S (12)^a (21)^b D> 0^inf
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> S (12)^a (21)^b 2 B> 0^inf
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]
--> S (12)^a (21)^b 2 <B 2 0^inf
--> S (12)^a (21)^b <C 1 2 0^inf
--> S (12)^a <C (11)^b 1 2 0^inf
--> S (12)^a-1 1 <D (11)^b+1 2 0^inf
--> S (12)^a-1 2 A> (11)^b+1 2 0^inf
--> S (12)^a-1 2 (12)^b+1 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+1 <C 1 0^inf
--> S (12)^a-1 2 (12)^b 1 <D 11 0^inf
--> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf
--> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf
--> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf
--> S (12)^a-1 2^2 <A (11)^2b+2 0^inf
--> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf
--> S (12)^a-1 <D (11)^2b+3 0^inf


10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
Obtained by repeating rule 9.
by repetition of rule A1


11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
by:
S (11)^a <D (11)^b 0^inf
A(0, 2k+1, c, ...)
--> S (11)^a-1 1 2 A> (11)^b 0^inf
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> S (11)^a-1 (12)^b+1 A> 0^inf
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> S (11)^a-1 <A (11)^b+2 0^inf
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]
--> S (11)^a-1 D> (11)^b+2 0^inf
--> S (11)^a-1 (21)^b+2 D> 0^inf
--> S (11)^a-1 (21)^b+2 2 B> 0^inf
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
Note that 1 (21)^k = (12)^k 1
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
</pre>
</pre>
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
* Rule 10: A(a, b, c) --> <math>A(a,0,2^{b} \times c + 2^{b} \times 3 - 3)</math> which becomes <math>A(a,0,2^{b+1} \times 3 - 3)</math> if c = 3.
* Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)


Further: let <math>f(n) = 2^{n+1} \times 3</math>
'''Using the accelerated rules:'''
* If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3)


* A(2k + d, 0, c) --> <math>A(d, f^{k-1}(c+3), 3)</math>
<pre>
<pre>
The TM enters configuration A(19, 2, 3) after 799 steps with tape:
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
 
b mod 2 = 0:
  b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
  b = 0:
      a mod 2 = 0:
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
        a = 0: unreachable
      a mod 2 = 1:
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
  b ≥ 3:
      a mod 2 = 0:
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
        a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
        a = 1: unreachable
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
</pre>
The TM starts in configuration A(0, 2, 0) after 7 steps.

Latest revision as of 14:44, 3 November 2025

1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD (bbch) is a BB(6) holdout TM.

Analysis

Early rules:

S is any tape configuration

1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
   S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)

Later rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.

Accelerated rules:

R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)

A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]

A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1

A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]

Using the accelerated rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: unreachable
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: unreachable
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

The TM starts in configuration A(0, 2, 0) after 7 steps.