User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Added construction of one of the rules)
(Gave approximation for score)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
Placeholder
{{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}
{{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}}
<pre>
<pre>
Line 13: Line 12:


7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S
7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S
by:
S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 (12)^b 1 B> 0 S
--> S (12)^a 2 (12)^b <A (11) S
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S
--> S (12)^a-1 2 A> (11)^b+2 S
--> S (12)^a-1 2 (12)^b+2 A> S
8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf
8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf
Obtained by repeating rule 8.


9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf
9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf
Line 37: Line 47:


10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
Obtained by repeating rule 9.
11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
by:
S (11)^a <D (11)^b 0^inf
--> S (11)^a-1 1 2 A> (11)^b 0^inf
--> S (11)^a-1 (12)^b+1 A> 0^inf
--> S (11)^a-1 <A (11)^b+2 0^inf
--> S (11)^a-1 D> (11)^b+2 0^inf
--> S (11)^a-1 (21)^b+2 D> 0^inf
--> S (11)^a-1 (21)^b+2 2 B> 0^inf
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
Note that 1 (21)^k = (12)^k 1
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
</pre>
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
* Rule 10: A(a, b, c) --> <math>A(a,0,2^{b} \times c + 2^{b} \times 3 - 3)</math> which becomes <math>A(a,0,2^{b+1} \times 3 - 3)</math> if c = 3.
* Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)
Further: let <math>f(n) = 2^{n+1} \times 3</math>
* If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3)
* A(2k + d, 0, c) --> <math>A(d, f^{k-1}(c+3), 3)</math>
<pre>
The TM enters configuration A(19, 2, 3) after 799 steps with tape:
0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
</pre>
==Trajectory==
A(19, 2, 3) --> A(19, 0, 21) --> <math>A(1, f^{8}(24), 3)</math>
--> <math>A(1, 0, f^{9}(24) - 3)</math>
Lets have <math> f^{9}(24) - 3</math> = m.
<pre>
Final trajectory:
0^inf 2 1 (11)^1 <D (11)^m 0^inf
--> 0^inf 2 1 1 2 A> (11)^m 0^inf
--> 0^inf 2 1 (12)^m+1 A> 0^inf
--> 0^inf 2 1 <A (11)^m+2 0^inf
--> 0^inf 2 1 D> (11)^m+2 0^inf
--> 0^inf (21)^m+3 D> 0^inf
--> 0^inf (21)^m+3 2 B> 0^inf
--> 0^inf (21)^m+3 2 <B 2 0^inf
--> 0^inf (21)^m+3 <C (12)^1 0^inf
--> 0^inf <C (11)^m+3 (12)^1 0^inf
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
Score = 2m + 9
Score calculated in HyperCalc:
(10^)^8 30,302,671.815163
Or in tetration: 10^^10.873987 (truncated)
</pre>
</pre>

Latest revision as of 18:09, 30 September 2025

1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD (bbch)

S is any tape configuration
1. S D> 2^a S --> S 2^a D> S
2. S B> 1^a S --> S 1^a B> S
3. S 1 B> 0 S --> S <A 1^2 S
4. S D> (11)^a S --> S (21)^a D> S
   S A> (11)^a S --> S (12)^a A> S
5. S (21)^a <C S --> S <C (11)^a S
   S (12)^a <A S --> S <A (11)^a S
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S

7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S
by:
S (12)^a 2 (12)^b A> 0^2 S
--> S (12)^a 2 (12)^b 1 B> 0 S
--> S (12)^a 2 (12)^b <A (11) S 
--> S (12)^a 2 <A (11)^b+1 S
--> S (12)^a <C 1 (11)^b+1 S
--> S (12)^a-1 1 <D (11)^b+2 S
--> S (12)^a-1 2 A> (11)^b+2 S
--> S (12)^a-1 2 (12)^b+2 A> S

8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf
Obtained by repeating rule 8.

9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf
by:
S (12)^a <D (11)^b 0^inf
--> S (12)^a D> (11)^b 0^inf
--> S (12)^a (21)^b D> 0^inf
--> S (12)^a (21)^b 2 B> 0^inf
--> S (12)^a (21)^b 2 <B 2 0^inf
--> S (12)^a (21)^b <C 1 2 0^inf
--> S (12)^a <C (11)^b 1 2 0^inf
--> S (12)^a-1 1 <D (11)^b+1 2 0^inf
--> S (12)^a-1 2 A> (11)^b+1 2 0^inf
--> S (12)^a-1 2 (12)^b+1 A> 2 0^inf
--> S (12)^a-1 2 (12)^b+1 <C 1 0^inf
--> S (12)^a-1 2 (12)^b 1 <D 11 0^inf
--> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf
--> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf
--> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf
--> S (12)^a-1 2^2 <A (11)^2b+2 0^inf
--> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf
--> S (12)^a-1 <D (11)^2b+3 0^inf

10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf
Obtained by repeating rule 9.

11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
by:
S (11)^a <D (11)^b 0^inf
--> S (11)^a-1 1 2 A> (11)^b 0^inf
--> S (11)^a-1 (12)^b+1 A> 0^inf
--> S (11)^a-1 <A (11)^b+2 0^inf
--> S (11)^a-1 D> (11)^b+2 0^inf
--> S (11)^a-1 (21)^b+2 D> 0^inf
--> S (11)^a-1 (21)^b+2 2 B> 0^inf
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf
Note that 1 (21)^k = (12)^k 1
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf

Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf

  • Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
  • Rule 10: A(a, b, c) --> which becomes if c = 3.
  • Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)

Further: let

  • If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3)
  • A(2k + d, 0, c) -->
The TM enters configuration A(19, 2, 3) after 799 steps with tape:
0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf

Trajectory

A(19, 2, 3) --> A(19, 0, 21) -->

-->

Lets have = m.

Final trajectory:
0^inf 2 1 (11)^1 <D (11)^m 0^inf
--> 0^inf 2 1 1 2 A> (11)^m 0^inf
--> 0^inf 2 1 (12)^m+1 A> 0^inf
--> 0^inf 2 1 <A (11)^m+2 0^inf
--> 0^inf 2 1 D> (11)^m+2 0^inf
--> 0^inf (21)^m+3 D> 0^inf
--> 0^inf (21)^m+3 2 B> 0^inf
--> 0^inf (21)^m+3 2 <B 2 0^inf
--> 0^inf (21)^m+3 <C (12)^1 0^inf
--> 0^inf <C (11)^m+3 (12)^1 0^inf
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf
Score = 2m + 9

Score calculated in HyperCalc:
(10^)^8 30,302,671.815163
Or in tetration: 10^^10.873987 (truncated)