BB(2,6): Difference between revisions
m (Changed "center" to "left" alignment for names in second table. Removed commented out table (before, I had saved it this way).) |
(Updated overall format and added a place for Phase 1 work.) |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
== Top Halters == | == Top Halters == | ||
The highest known scoring machines are: | The scores are given using [[wikipedia:Knuth's_up-arrow_notation|Knuth's up-arrow notation]] with an extension to decimal tetration<ref>Shawn Ligocki. 2022. [https://www.sligocki.com/2022/06/25/ext-up-notation.html "Extending Up-arrow Notation"]</ref>. The 20 highest known scoring machines are: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Line 50: | Line 50: | ||
|10 ↑↑ 17.53 | |10 ↑↑ 17.53 | ||
|Shawn Ligocki | |Shawn Ligocki | ||
|- | |||
|{{TM|1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ|halt}} | |||
|10 ↑↑ 17.53 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA|halt}} | |||
|10 ↑↑ 17.08 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA|halt}} | |||
|10 ↑↑ 15.44 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA|halt}} | |||
|10 ↑↑ 14.35 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA|halt}} | |||
|10 ↑↑ 14.17 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA|halt}} | |||
|10 ↑↑ 14.05 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA|halt}} | |||
|10 ↑↑ 13.69 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ|halt}} | |||
|10 ↑↑ 12.42 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ|halt}} | |||
|10 ↑↑ 11.70 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB2LA1RA1RA5LB1RZ_1LA4RB3RB4LB0RB0RA|halt}} | |||
|10 ↑↑ 10.39 | |||
|Andrew Ducharme | |||
|} | |} | ||
All decimal places are truncated. | All decimal places are truncated. | ||
== | == Phase 1 == | ||
The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278M were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details will be given in this table: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Runtime (hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
!rowspan="2" |Done by | |||
!colspan="2" |Holdout TMs | |||
!rowspan="2" |<math>*^1</math> | |||
!rowspan="2" |<math>*^2</math> | |||
!colspan="2" |TMs/sec/core | |||
!rowspan="2" |Description | |||
!rowspan="2" |Data | |||
|- | |||
!Input | |||
!Output | |||
!<math>*^3</math> | |||
!<math>*^4</math> | |||
|- | |||
|style="text-align:left" |'''---''' | |||
|'''---''' | |||
|'''---''' | |||
|'''---''' | |||
|'''---''' | |||
|'''---''' | |||
|'''---''' | |||
|style="text-align:left" |'''---''' | |||
|} | |||
== Phase 2 == | |||
Starting from Terry Ligocki's [[holdouts list]] of 22,302,296 TMs, additional filtering has been performed: | Starting from Terry Ligocki's [[holdouts list]] of 22,302,296 TMs, additional filtering has been performed: | ||
Line 203: | Line 276: | ||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run | |style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run | ||
|} | |} | ||
==References== | |||
<!-- | <!-- | ||
A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute. | A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute. |
Latest revision as of 20:01, 28 September 2025
The 2-state, 6-symbol Busy Beaver problem, BB(2,6), is unsolved. With cryptids like Hydra in the preceding domain BB(2,5), we know that we must solve a Collatz-like problem in order to solve BB(2,6).
The current BB(2,6) champion 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA
(bbch) was discovered by Pavel Kropitz in May 2023, proving the lower bound:
Top Halters
The scores are given using Knuth's up-arrow notation with an extension to decimal tetration[1]. The 20 highest known scoring machines are:
TM | Approximate sigma score | Discoverer |
---|---|---|
1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
10 ↑↑↑ 3 | Pavel Kropitz |
1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ (bbch)
|
10 ↑↑ 91.17 | Pavel Kropitz |
1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA (bbch)
|
10 ↑↑ 70.27 | Shawn Ligocki |
1RB2LB1RZ3LA2LA4RB_1LA3RB4RB1LB5LB0RA (bbch)
|
10 ↑↑ 69.68 | Shawn Ligocki |
1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ (bbch)
|
10 ↑↑ 54.90 | Andrew Ducharme |
1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB (bbch)
|
10 ↑↑ 42.17 | Andrew Ducharme |
1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB (bbch)
|
10 ↑↑ 40.07 | Andrew Ducharme |
1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ (bbch)
|
10 ↑↑ 21.54 | Shawn Ligocki |
1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA (bbch)
|
10 ↑↑ 20.58 | Shawn Ligocki |
1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Shawn Ligocki |
1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Andrew Ducharme |
1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA (bbch)
|
10 ↑↑ 17.08 | Andrew Ducharme |
1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA (bbch)
|
10 ↑↑ 15.44 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA (bbch)
|
10 ↑↑ 14.35 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA (bbch)
|
10 ↑↑ 14.17 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA (bbch)
|
10 ↑↑ 14.05 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA (bbch)
|
10 ↑↑ 13.69 | Andrew Ducharme |
1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ (bbch)
|
10 ↑↑ 12.42 | Andrew Ducharme |
1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ (bbch)
|
10 ↑↑ 11.70 | Andrew Ducharme |
1RB2LA1RA1RA5LB1RZ_1LA4RB3RB4LB0RB0RA (bbch)
|
10 ↑↑ 10.39 | Andrew Ducharme |
All decimal places are truncated.
Phase 1
The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278M were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details will be given in this table:
(done to reduce column size: = % Reduced, = Runtime (hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Input | Output | |||||||
--- | --- | --- | --- | --- | --- | --- | --- |
Phase 2
Starting from Terry Ligocki's holdouts list of 22,302,296 TMs, additional filtering has been performed:
(done to reduce column size: = % Reduced, = Compute Time (core-hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Input | Output | |||||||
Terry Ligocki | 22,302,296 | 20,246,662 | 9.2% | 23.0 | 24.80 | 269.09 | MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run | Google Drive |
Terry Ligocki | 20,246,662 | 19,134,631 | 5.5% | 83.4 | 3.71 | 67.46 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run | |
Terry Ligocki | 19,134,631 | 5,443,318 | 71.6% | 46.6 | 81.69 | 114.17 | chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run | |
Terry Ligocki | 5,443,318 | 3,400,118 | 37.5% | 16.3 | 34.87 | 92.90 | chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run | |
Terry Ligocki | 3,400,118 | 3,303,416 | 2.8% | 14.1 | 1.90 | 66.82 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run | |
Terry Ligocki | 3,303,416 | 3,249,427 | 1.6% | 16.5 | 0.91 | 55.59 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run | |
Terry Ligocki | 3,249,427 | 3,155,741 | 2.9% | 13.4 | 1.94 | 67.25 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run | |
Terry Ligocki | 3,155,741 | 2,246,891 | 28.8% | 14.1 | 17.93 | 62.24 | chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run | |
Terry Ligocki | 2,246,891 | 2,143,803 | 4.6% | 7.5 | 3.82 | 83.19 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run | |
Terry Ligocki | 2,143,803 | 1,938,663 | 9.6% | 7.5 | 7.58 | 79.21 | MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run | |
Terry Ligocki | 1,938,663 | 1,885,153 | 2.8% | 7.5 | 1.98 | 71.72 | chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |
Terry Ligocki | 1,885,153 | 1,848,887 | 1.9% | 10.5 | 0.96 | 49.68 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run | |
Terry Ligocki | 1,848,887 | 1,816,027 | 1.8% | 7.6 | 1.20 | 67.77 | chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run | |
Terry Ligocki | 1,816,027 | 1,688,951 | 7.0% | 10.4 | 3.40 | 48.66 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run |
References
- ↑ Shawn Ligocki. 2022. "Extending Up-arrow Notation"