User:Polygon/Page for testing: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Polygon (talk | contribs)
Removed rule names
 
(94 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}} is the current [[BB(2,6)]] [[champion]]. It was discovered on the 19th of May 2023 by Pavel Kropitz. It halts with a score > <math>10 \uparrow\uparrow 10 \uparrow\uparrow 10^{10^{115}}</math>.
{{TM|1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD}} is a [[BB(6)]] [[holdout]] TM.
==Analysis by Shawn Ligocki==
 
https://www.sligocki.com/2023/05/20/bb-2-6-p3.html
==Analysis==
 
Early rules:
<pre>
<pre>
Analysis
S is any tape configuration
Level 1
These rules can all be verified by direct simulation:
00 <A 212 22^n 55 → <A 212 22^n+2


00 <A 212 22^n 2 55 → <A 212 55^n+2 2
1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
  S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)
</pre>


0^5 <A 212 22^n 52 5555 → <A 212 55 2 55^n+3 52
Later rules:
00 <A 212 22^n 2 52 5 → <A 212 55^n+2 52
<pre>
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf


Level 2
b mod 2 = 0:
Repeating the first rule above we get:
  b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
0^∞ <A 212 22^n 55^k → 0^∞ 212 22^n+2k
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
  b = 0:
      a mod 2 = 0:
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
        a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
  b ≥ 3:
      a mod 2 = 0:
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
        a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
        a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.


which let's us prove Rule 2:
'''Accelerated rules:'''
0^∞ <A 212 22^n 2 55 → 0^∞ <A 212 55^n+2 2
<pre>
                    → 0^∞ <A 212 22^2n+4 2
R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)


Level 3
A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
Repeating Rule 2 we get:
by:
0^∞ <A 212 22^n 2 55^k 0^∞ <A 212 22^(n+4)*((2^k)-4) 2
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]


which let's us prove Rule 3:
A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
0^∞ <A 212 22^n 52 5^5 → 0^∞ <A 212 55 2 55^n+3 52 5
by repetition of rule A1
                      → 0^∞ <A 212 22^2 2 55^n+3 52 5
 
                      → 0^∞ <A 212 22^(6*2^(n+3)-2) 52 5
A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
                      → 0^∞ <A 212 55^(6*2^(n+3)-2) 52
by:
                      → 0^∞ <A 212 22^(6*2^(n+4)-4) 52
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]
</pre>
</pre>
∞∞∞∞
 
→→→→
'''Using the accelerated rules:'''
 
<pre>
Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf
 
b mod 2 = 0:
  b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
  b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
  b = 0:
      a mod 2 = 0:
        a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
        a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
        a = 0: unreachable
      a mod 2 = 1:
        a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
        a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
        a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
  b ≥ 3:
      a mod 2 = 0:
        a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
        a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
        a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
        a = 1: unreachable
  b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)
</pre>
 
The TM starts in configuration A(0, 2, 0) after 7 steps.

Latest revision as of 14:44, 3 November 2025

1RB1LE_1LB1LC_1RD0LE_---0RB_1RF1LA_0RA0RD (bbch) is a BB(6) holdout TM.

Analysis

Early rules:

S is any tape configuration

1. S 0^a <B S --> S <B 1^a S [+a steps]
2. S D> 1^2 S --> S 1 D> 1 S [+3 steps]
3. S D> 1^a 1 S --> S 1^a D> 1 S [+3a steps] (if a > 0)
4. S (11)^a <E S --> S <E (11)^a S [+2a steps]
   S (11)^a <A S --> S <A (11)^a S [+2a steps]
5. S 1^2 D> 1 0 S --> S <E 0 1^3 S [+5 steps]
6. S 0 1^a <E S --> S 1 0 1^a-2 D> 1 S [+4a -4 steps] (if a mod 2 = 0)

Later rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, b, c, ...) --> A(a+1, b-4, c+3, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: A(0, 0, c, ...) --> spin out
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: A(0, 3, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+3 ...
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: A(1, b, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^b-2 0 1^c+3 ...
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

A(0, 0, c, ...), A(0, 3, c, ...) and A(1, 2k+1, c, ...) are not reachable by any of these rules (reaching them would require negative entries), meaning that they can only be triggered if they are the TMs starting configurations.

Accelerated rules:

R8: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...) [+4bk -8k^2 +k steps] (if v mod 2 = 0 and k ≥ 1)

A1: A(0, 2k+1, c, ...) --> A(0, 2(k-1)+1, c+6, ...) [+16k +10 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(2, 2(k-2)+1, c+3, ...) [+8k +3]
--> A(1, 0, 2(k-3)+1, c+6, ...) [+10k +10]
--> A(0, 2(k-1)+1, c+6, ...) [+16k +10]

A2: A(0, 2k+1, c, ...) --> A(0, 5, c+6k-12) [+8k^2 +18k -68 steps] (if k ≥ 3)
by repetition of rule A1

A3: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) [+8k^2 +36k +3c -65 steps] (if k ≥ 3)
by:
A(0, 2k+1, c, ...)
--> A(0, 5, c+6k-12, ...) by rule A2 [+8k^2 +18k -68]
--> A(2, 1, c+6k-9, ...) [8k^2 +18k -49]
--> A(0, c+6k-4, ...) [+8k^2 +36k + 3c -65]

Using the accelerated rules:

Let A(a, b, c, d, e, f, ..., k) = 0^inf 1^a 0 1^b D> 1 0 1^c 0 1^d 0 1^e 0 1^f ... 0 1^k 0^inf

b mod 2 = 0:
   b ≥ 4: A(a, 4k+v, c, ...) --> A(a+k, v, c+3k, ...)
   b = 2: A(a, 2, c, d, ...) --> A(a+2, c+1, d, ...)
   b = 0:
      a mod 2 = 0:
         a ≥ 4: A(a, 0, c, ...) --> A(1, a-4, c+4, ...)
         a = 2: A(2, 0, c, d, ...) --> A(2, c+2, d, ...)
         a = 0: unreachable
      a mod 2 = 1:
         a ≥ 4: A(a, 0, c, ...) --> A(2, a-4, c+4, ...)
         a = 3: A(3, 0, c, ...) --> halt with 0^inf 1^2 0 1 Z> 1^c+4 ...
         a = 1: A(1, 0, c, d, ...) --> A(0, c+4, d, ...)
b mod 2 = 1:
   b ≥ 3:
      a mod 2 = 0:
         a ≥ 2: A(a, b, c, ...) --> A(1, a-2, b-2, c+3, ...)
         a = 0:
            b ≥ 7: A(0, 2k+1, c, ...) --> A(0, c+6k-4, ...) by rule A3
            b = 5: A(0, b, c, ...) --> A(2, b-4, c+3, ...)
            b = 3: unreachable
      a mod 2 = 1:
         a ≥ 2: A(a, b, c, ...) --> A(2, a-2, b-2, c+3, ...)
         a = 1: unreachable
   b = 1: A(a, 1, c, d, ...) --> A(0, a+c+3, d, ...)

The TM starts in configuration A(0, 2, 0) after 7 steps.