User:Polygon/Page for testing: Difference between revisions
Jump to navigation
Jump to search
(Added level 2) |
(Gave approximation for score) |
||
(22 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{TM| | {{TM|1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD|halt}} | ||
<pre> | <pre> | ||
S is any tape configuration | |||
1. S D> 2^a S --> S 2^a D> S | |||
2. S B> 1^a S --> S 1^a B> S | |||
3. S 1 B> 0 S --> S <A 1^2 S | |||
4. S D> (11)^a S --> S (21)^a D> S | |||
S A> (11)^a S --> S (12)^a A> S | |||
5. S (21)^a <C S --> S <C (11)^a S | |||
S (12)^a <A S --> S <A (11)^a S | |||
6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S | |||
7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S | |||
by: | |||
S (12)^a 2 (12)^b A> 0^2 S | |||
--> S (12)^a 2 (12)^b 1 B> 0 S | |||
--> S (12)^a 2 (12)^b <A (11) S | |||
--> S (12)^a 2 <A (11)^b+1 S | |||
--> S (12)^a <C 1 (11)^b+1 S | |||
--> S (12)^a-1 1 <D (11)^b+2 S | |||
--> S (12)^a-1 2 A> (11)^b+2 S | |||
--> S (12)^a-1 2 (12)^b+2 A> S | |||
8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf | |||
Obtained by repeating rule 8. | |||
9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf | |||
by: | |||
0^ | S (12)^a <D (11)^b 0^inf | ||
--> S (12)^a D> (11)^b 0^inf | |||
--> S (12)^a (21)^b D> 0^inf | |||
--> S (12)^a (21)^b 2 B> 0^inf | |||
--> S (12)^a (21)^b 2 <B 2 0^inf | |||
--> S (12)^a (21)^b <C 1 2 0^inf | |||
--> S (12)^a <C (11)^b 1 2 0^inf | |||
--> S (12)^a-1 1 <D (11)^b+1 2 0^inf | |||
--> S (12)^a-1 2 A> (11)^b+1 2 0^inf | |||
--> S (12)^a-1 2 (12)^b+1 A> 2 0^inf | |||
--> S (12)^a-1 2 (12)^b+1 <C 1 0^inf | |||
--> S (12)^a-1 2 (12)^b 1 <D 11 0^inf | |||
--> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf | |||
--> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf | |||
--> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf | |||
--> S (12)^a-1 2^2 <A (11)^2b+2 0^inf | |||
--> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf | |||
--> S (12)^a-1 <D (11)^2b+3 0^inf | |||
which let | 10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf | ||
0^ | Obtained by repeating rule 9. | ||
11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf | |||
by: | |||
S (11)^a <D (11)^b 0^inf | |||
--> S (11)^a-1 1 2 A> (11)^b 0^inf | |||
--> S (11)^a-1 (12)^b+1 A> 0^inf | |||
--> S (11)^a-1 <A (11)^b+2 0^inf | |||
--> S (11)^a-1 D> (11)^b+2 0^inf | |||
--> S (11)^a-1 (21)^b+2 D> 0^inf | |||
--> S (11)^a-1 (21)^b+2 2 B> 0^inf | |||
--> S (11)^a-1 (21)^b+2 2 <B 2 0^inf | |||
--> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf | |||
--> S (11)^a-1 <C (11)^b+2 1 2 0^inf | |||
--> S (11)^a-2 1 <A (11)^b+3 2 0^inf | |||
--> S (11)^a-2 1 D> (11)^b+3 2 0^inf | |||
--> S (11)^a-2 1 (21)^b+3 D> 2 0^inf | |||
--> S (11)^a-2 1 (21)^b+3 2 D> 0^inf | |||
--> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf | |||
--> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf | |||
--> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf | |||
--> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf | |||
Note that 1 (21)^k = (12)^k 1 | |||
= S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf | |||
--> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf | |||
--> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf | |||
--> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf | |||
--> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf | |||
--> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf | |||
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf | |||
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf | |||
--> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf | |||
--> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf | |||
--> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf | |||
--> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf | |||
--> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf | |||
</pre> | |||
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf | |||
* Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3) | |||
* Rule 10: A(a, b, c) --> <math>A(a,0,2^{b} \times c + 2^{b} \times 3 - 3)</math> which becomes <math>A(a,0,2^{b+1} \times 3 - 3)</math> if c = 3. | |||
* Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3) | |||
Further: let <math>f(n) = 2^{n+1} \times 3</math> | |||
* If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3) | |||
* A(2k + d, 0, c) --> <math>A(d, f^{k-1}(c+3), 3)</math> | |||
<pre> | |||
The TM enters configuration A(19, 2, 3) after 799 steps with tape: | |||
0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf | |||
</pre> | |||
==Trajectory== | |||
A(19, 2, 3) --> A(19, 0, 21) --> <math>A(1, f^{8}(24), 3)</math> | |||
--> <math>A(1, 0, f^{9}(24) - 3)</math> | |||
Lets have <math> f^{9}(24) - 3</math> = m. | |||
<pre> | |||
Final trajectory: | |||
0^inf 2 1 (11)^1 <D (11)^m 0^inf | |||
--> 0^inf 2 1 1 2 A> (11)^m 0^inf | |||
--> 0^inf 2 1 (12)^m+1 A> 0^inf | |||
--> 0^inf 2 1 <A (11)^m+2 0^inf | |||
--> 0^inf 2 1 D> (11)^m+2 0^inf | |||
--> 0^inf (21)^m+3 D> 0^inf | |||
--> 0^inf (21)^m+3 2 B> 0^inf | |||
--> 0^inf (21)^m+3 2 <B 2 0^inf | |||
--> 0^inf (21)^m+3 <C (12)^1 0^inf | |||
--> 0^inf <C (11)^m+3 (12)^1 0^inf | |||
--> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf | |||
Score = 2m + 9 | |||
Score calculated in HyperCalc: | |||
(10^)^8 30,302,671.815163 | |||
Or in tetration: 10^^10.873987 (truncated) | |||
</pre> | </pre> |
Latest revision as of 18:09, 30 September 2025
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD
(bbch)
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S 2. S B> 1^a S --> S 1^a B> S 3. S 1 B> 0 S --> S <A 1^2 S 4. S D> (11)^a S --> S (21)^a D> S S A> (11)^a S --> S (12)^a A> S 5. S (21)^a <C S --> S <C (11)^a S S (12)^a <A S --> S <A (11)^a S 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S 7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S by: S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a 2 (12)^b 1 B> 0 S --> S (12)^a 2 (12)^b <A (11) S --> S (12)^a 2 <A (11)^b+1 S --> S (12)^a <C 1 (11)^b+1 S --> S (12)^a-1 1 <D (11)^b+2 S --> S (12)^a-1 2 A> (11)^b+2 S --> S (12)^a-1 2 (12)^b+2 A> S 8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf Obtained by repeating rule 8. 9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf by: S (12)^a <D (11)^b 0^inf --> S (12)^a D> (11)^b 0^inf --> S (12)^a (21)^b D> 0^inf --> S (12)^a (21)^b 2 B> 0^inf --> S (12)^a (21)^b 2 <B 2 0^inf --> S (12)^a (21)^b <C 1 2 0^inf --> S (12)^a <C (11)^b 1 2 0^inf --> S (12)^a-1 1 <D (11)^b+1 2 0^inf --> S (12)^a-1 2 A> (11)^b+1 2 0^inf --> S (12)^a-1 2 (12)^b+1 A> 2 0^inf --> S (12)^a-1 2 (12)^b+1 <C 1 0^inf --> S (12)^a-1 2 (12)^b 1 <D 11 0^inf --> S (12)^a-1 2 (12)^b 2 A> (11)^1 0^inf --> S (12)^a-1 2 (12)^b 2 (12)^1 A> 0^inf --> S (12)^a-1 2 2 (12)^2b+1 A> 0^inf --> S (12)^a-1 2^2 <A (11)^2b+2 0^inf --> S (12)^a-1 2 <C 1 (11)^2b+2 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf 10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf Obtained by repeating rule 9. 11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf by: S (11)^a <D (11)^b 0^inf --> S (11)^a-1 1 2 A> (11)^b 0^inf --> S (11)^a-1 (12)^b+1 A> 0^inf --> S (11)^a-1 <A (11)^b+2 0^inf --> S (11)^a-1 D> (11)^b+2 0^inf --> S (11)^a-1 (21)^b+2 D> 0^inf --> S (11)^a-1 (21)^b+2 2 B> 0^inf --> S (11)^a-1 (21)^b+2 2 <B 2 0^inf --> S (11)^a-1 (21)^b+2 <C (12)^1 0^inf --> S (11)^a-1 <C (11)^b+2 1 2 0^inf --> S (11)^a-2 1 <A (11)^b+3 2 0^inf --> S (11)^a-2 1 D> (11)^b+3 2 0^inf --> S (11)^a-2 1 (21)^b+3 D> 2 0^inf --> S (11)^a-2 1 (21)^b+3 2 D> 0^inf --> S (11)^a-2 1 (21)^b+3 2^2 B> 0^inf --> S (11)^a-2 1 (21)^b+3 2^2 <B 2 0^inf --> S (11)^a-2 1 (21)^b+3 2 <C (12)^1 0^inf --> S (11)^a-2 1 (21)^b+3 <D 1 1 2 0^inf Note that 1 (21)^k = (12)^k 1 = S (11)^a-2 (12)^b+3 1 <D (11)^1 2 0^inf --> S (11)^a-2 (12)^b+3 2 A> (11)^1 2 0^inf --> S (11)^a-2 (12)^b+3 2 (12)^1 A> 2 0^inf --> S (11)^a-2 (12)^b+3 2 (12)^1 <C 1 0^inf --> S (11)^a-2 (12)^b+3 2 1<D (11)^1 0^inf --> S (11)^a-2 (12)^b+3 2^2 A> (11)^1 0^inf --> S (11)^a-2 (12)^b+3 2^2 (12)^1 A> 0^inf --> S (11)^a-2 (12)^b+3 2^2 (12)^1 1 B> 0^inf --> S (11)^a-2 (12)^b+3 2^2 (12)^1 <A (11)^1 0^inf --> S (11)^a-2 (12)^b+3 2^2 1 <C 1 (11)^1 0^inf --> S (11)^a-2 (12)^b+3 2^2 <A (11)^2 0^inf --> S (11)^a-2 (12)^b+3 2 <C 1 (11)^2 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
- Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
- Rule 10: A(a, b, c) --> which becomes if c = 3.
- Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)
Further: let
- If c = 3: A(a, b, 3) --> A(a, 0, f(c) - 3) --> A(a - 2, f(c), 3)
- A(2k + d, 0, c) -->
The TM enters configuration A(19, 2, 3) after 799 steps with tape: 0^inf 2 1 (11)^19 (12)^2 <D (11)^3 0^inf
Trajectory
A(19, 2, 3) --> A(19, 0, 21) -->
-->
Lets have = m.
Final trajectory: 0^inf 2 1 (11)^1 <D (11)^m 0^inf --> 0^inf 2 1 1 2 A> (11)^m 0^inf --> 0^inf 2 1 (12)^m+1 A> 0^inf --> 0^inf 2 1 <A (11)^m+2 0^inf --> 0^inf 2 1 D> (11)^m+2 0^inf --> 0^inf (21)^m+3 D> 0^inf --> 0^inf (21)^m+3 2 B> 0^inf --> 0^inf (21)^m+3 2 <B 2 0^inf --> 0^inf (21)^m+3 <C (12)^1 0^inf --> 0^inf <C (11)^m+3 (12)^1 0^inf --> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf Score = 2m + 9 Score calculated in HyperCalc: (10^)^8 30,302,671.815163 Or in tetration: 10^^10.873987 (truncated)