Busy Beaver for lambda calculus: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Tromp (talk | contribs)
Tromp (talk | contribs)
 
(42 intermediate revisions by 3 users not shown)
Line 16: Line 16:
The proof that BBλ(n) is uncomputable is very similar to Radó's original proof that Σ(n) is uncomputable. Proof by contradiction:
The proof that BBλ(n) is uncomputable is very similar to Radó's original proof that Σ(n) is uncomputable. Proof by contradiction:


Assume BBλ is computable and so there exists a term ''f'' which computes it on [[wikipedia:Church_encoding|Church numerals]]. In other words: for all <math>n \in \N</math>: <math>(f \; C_n)</math> beta reduces to normal form <math>C_{BB\lambda(n)}</math> (where <math>C_n</math> denotes the Church numeral ''n''). Denote the binary lambda encoded size of ''f'' as ''k''. Consider the term <math>f \; (C_2 \; C_n)</math> which has size <math>2+k+(5*2+6)+(5*n+6) = 5n + k + 26</math> bits. This term reduces to <math>C_{BB\lambda(n^2)}</math> which has size <math>5 \cdot BB\lambda(n^2) + 6</math> bits. But for sufficiently large n, <math>n^2 > 5n + k + 26</math> and so  <math>5 \cdot BB\lambda(n^2) + 6 > BB\lambda(5n + k + 26)</math>. But this is a contradiction, we've found a <math>5n + k + 26</math> bit term which reduces to a normal form larger than <math>BB\lambda(5n + k + 26)</math>.
Assume BBλ is computable and so there exists a term ''f'' which computes it on [[wikipedia:Church_encoding|Church numerals]]. In other words: for all <math>n \in \N</math>: <math>(f \; C_n)</math> beta reduces to normal form <math>C_{BB\lambda(n)}</math> (where <math>C_n</math> denotes the Church numeral ''n''). Denote the binary lambda encoded size of ''f'' as ''k''. Consider the term <math>f \; (C_2 \; C_n)</math> which has size <math>2+k+2+(5\times2+6)+(5n+6) = 5n + k + 26</math> bits. This term reduces to <math>C_{BB\lambda(n^2)}</math> which has size <math>5 \cdot BB\lambda(n^2) + 6</math> bits. But for sufficiently large n, <math>n^2 > 5n + k + 26</math> and so  <math>5 \cdot BB\lambda(n^2) + 6 > BB\lambda(5n + k + 26)</math>. But this is a contradiction, we've found a <math>5n + k + 26</math> bit term which reduces to a normal form larger than <math>BB\lambda(5n + k + 26)</math>.


Thus BBλ(n) is uncomputable. A variation of this argument shows that BBλ(n) eventually dominates all computable functions.
Thus BBλ(n) is uncomputable. A variation of this argument shows that BBλ(n) eventually dominates all computable functions.
Line 54: Line 54:


For the rest of n ≤ 20: BBλ(n) = n is trivial and can be achieved via picking any n bit term already in normal form. For example <code>\\...\1</code> and <code>\\...\2</code> with k lambdas has size 2k+2 and 2k+3 respectively (for k ≥ 1 and k ≥ 2 respectively).
For the rest of n ≤ 20: BBλ(n) = n is trivial and can be achieved via picking any n bit term already in normal form. For example <code>\\...\1</code> and <code>\\...\2</code> with k lambdas has size 2k+2 and 2k+3 respectively (for k ≥ 1 and k ≥ 2 respectively).
In the last column, JT and BF abbreviate John Tromp and Bertram Felgenhauer.


{| class="wikitable"
{| class="wikitable"
Line 60: Line 61:
!BBλ(n)
!BBλ(n)
!Champion
!Champion
!# Beta reductions
!Normal form
!Normal form
!Discovered By
!Discovered By
|-
|-
|21 || = 22 || <code>\(\1 1) (1 (\2))</code>
|21 || = 22 || <math>\lambda(\lambda 1 1) (1 (\lambda 2))</math>
|1|| <code>\(1 (\2)) (1 (\2))</code> || John Tromp & Bertram Felgenhauer
| <math>\lambda(1(\lambda 2))(1(\lambda 2))</math>|| JT & BF
|-
|-
|22 || = 24 || <code>\(\1 1) (1 (\\1))</code><code>\(\1 1 1) (1 1)</code>
|22 || = 24 || <math>\lambda(\lambda 1 1 1) (1 1)</math>
|1
| <math>\lambda(1 1) (1 1) (1 1)</math>|| JT & BF
1
| <code>\(1 (\\1)) (1 (\\1))</code> <code>\(1 1) (1 1) (1 1)</code>
|John Tromp & Bertram Felgenhauer
|-
|-
|23 || = 26 || <code>\(\1 1) (1 (\\2))</code>
|23 || = 26 || <math>\lambda(\lambda 1 1) (1 (\lambda\lambda 2))</math>
|1|| <code>\(1 (\\2)) (1 (\\2))</code> || John Tromp & Bertram Felgenhauer
| <math>\lambda(1 (\lambda\lambda 2)) (1 (\lambda\lambda 2))</math>|| JT & BF
|-
|-
|24 || = 30 || <code>\(\1 1 1) (1 (\1))</code>
|24 || = 30 || <math>\lambda(\lambda 1 1 1) (1 (\lambda 1))</math>
|1|| <code>\(1 (\1)) (1 (\1)) (1 (\1))</code> || John Tromp & Bertram Felgenhauer
| <math>\lambda(1 (\lambda 1)) (1 (\lambda 1)) (1 (\lambda 1))</math>|| JT & BF
|-
|-
|25 || = 42 || <code>\(\1 1) (\1 (2 1))</code>  
|25 || = 42 || <math>\lambda(\lambda 1 1) (\lambda 1 (2 1))</math>  
|3|| <code>\1 (\1 (2 1)) (1 (1 (\1 (2 1))))</code> || John Tromp & Bertram Felgenhauer
| <math>\lambda 1 (\lambda 1 (2 1)) (1 (1 (\lambda 1 (2 1))))</math> || JT & BF
|-
|-
|26 || = 52 || <code>(\1 1) (\\2 (1 2))</code>  
|26 || = 52 || <math>(\lambda 1 1) (\lambda\lambda 2 (1 2))</math>  
|3|| <code>\\2 (\\2 (1 2)) (1 (2 (\\2 (1 2))))</code> || John Tromp & Bertram Felgenhauer
| <math>\lambda\lambda 2 (\lambda\lambda 2 (1 2)) (1 (2 (\lambda\lambda 2 (1 2))))</math> || JT & BF
|-
|-
|27 || = 44 || <code>\\(\1 1) (\1 (2 1))</code>  
|27 || = 44 || <math>\lambda\lambda(\lambda 1 1) (\lambda 1 (2 1))</math>  
|3|| <code>\\1 (\1 (2 1)) (1 (1 (\1 (2 1))))</code> || John Tromp & Bertram Felgenhauer
| <math>\lambda\lambda 1 (\lambda 1 (2 1)) (1 (1 (\lambda 1 (2 1))))</math> || JT & BF
|-
|-
|28 || = 58 || <code>\(\1 1) (\1 (2 (\2))))</code>  
|28 || = 58 || <math>\lambda(\lambda 1 1) (\lambda 1 (2 (\lambda 2))))</math>  
|3|| <code>\1 (\\1 (3 (\2))) (1 (\2 (\\1 (4 (\2)))))</code>|| John Tromp & Bertram Felgenhauer
| <math>\lambda 1 (\lambda\lambda 1 (3 (\lambda 2))) (1 (\lambda 2 (\lambda\lambda 1 (4 (\lambda 2)))))</math>|| JT & BF
|-
|-
| 29 || = 223|| <code>\(\1 1) (\1 (1 (2 1)))</code>
| 29 || = 223|| <math>\lambda(\lambda 1 1) (\lambda 1 (1 (2 1)))</math>
|4|| <pre>
| <math>\lambda B (B (1 B)) \text{ where}</math>
\B (B (1 B))
<math>B = (A (A (1 A)))</math>,
  where:
<math>A = (1 (\lambda 1 (1 (2 1))))</math>
    B = (A (A (1 A)))
||JT & BF
    A = (1 (\1 (1 (2 1))))
</pre>||John Tromp & Bertram Felgenhauer
|-
|-
|30
|30
|= 160
|= 160
|<code>(\1 1 1) (\\2 (1 2))</code> and
|<math>(\lambda 1 1 1) (\lambda\lambda 2 (1 2))</math>
<code>(\1 (1 1)) (\\2 (1 2))</code>
|
|7
<math>\lambda\lambda 2 B A (1 (2 B A)) \text{ where}</math>
5
<math>B = (\lambda\lambda 2 A (1 (2 A)))</math>,
|<pre>
<math>A = (\lambda\lambda 2 (1 2))</math>
\\2 B A (1 (2 B A))
|JT & BF
  where:
    B = (\\2 A (1 (2 A)))
    A = (\\2 (1 2))
</pre>
|John Tromp & Bertram Felgenhauer
|-
|-
|31
|31
|= 267
|= 267
|<code>(\1 1) (\\2 (2 (1 2)))</code>
|<math>(\lambda 1 1) (\lambda\lambda 2 (2 (1 2)))</math>
|6
|  
|<pre>
<math>\lambda\lambda 2 A (2 A (C (2 A))) \text{ where}</math>
\\2 A (2 A (C (2 A)))
<math>C = (2 A (2 A (1 B (2 A))))</math>,
  where:
<math>B = (\lambda 3 A (3 A (1 (3 A))))</math>,
    C = (2 A (2 A (1 B (2 A))))
<math>A = (\lambda\lambda 2 (2 (1 2)))</math>
    B = (\3 A (3 A (1 (3 A))))
|JT & BF
    A = (\\2 (2 (1 2)))
</pre>
|John Tromp & Bertram Felgenhauer
|-
|-
|32
|32
|= 298
|= 298
|<code>\(\1 1) (\1 (1 (2 (\2))))</code>
|<math>\lambda(\lambda 1 1) (\lambda 1 (1 (2 (\lambda 2))))</math>
|
|
|
|John Tromp & Bertram Felgenhauer
|JT & BF
|-
|-
|33
|33
|= 1812
|= 1812
|<code>\(\1 1) (\1 (1 (1 (2 1))))</code>
|<math>\lambda(\lambda 1 1) (\lambda 1 (1 (1 (2 1))))</math>
|5
|
|<pre>
<math>\lambda C (C (C (1 C))) \text{ where}</math>
\C (C (C (1 C)))
<math>C = (B (B (B (1 B)))</math>,
  where:
<math>B = (A (A (A (1 A)))</math>,
    C = (B (B (B (1 B)))
<math>A = (1 (\lambda 1 (1 (1 (2 1)))))</math>
    B = (A (A (A (1 A)))
|JT & BF
    A = (1 (\1 (1 (1 (2 1)))))
</pre>
|John Tromp & Bertram Felgenhauer
|-
|-
|34 || <math>= \ 5 \left(2^{2^{2^2}}\right) + 6 = 327\,686</math>
|34 || <math>= 327\,686</math>
| <code>(\1 1 1 1) (\\2 (2 1))</code> and
| <math>(\lambda 1 1 1 1) (\lambda\lambda 2 (2 1))</math>
<code>(\1 (1 1) 1) (\\2 (2 1))</code>
| <math>C(2^{2^{2^2}})</math>|| JT & BF
| || <math>C(2^{2^{2^2}})</math>|| John Tromp & Bertram Felgenhauer
|-
|-
|35 || <math>= 5 \left(3^{3^3}\right) + 6 > 3.8 \times 10^{13}</math>
|35 || <math>= 5 \cdot 3^{3^3} + 6</math>
| <code>(\1 1 1) (\\2 (2 (2 1)))</code>  
<math> > 3.8 \times 10^{13}</math>
| || <math>C(3^{3^3})</math>|| John Tromp & Bertram Felgenhauer
| <math>(\lambda 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math>  
| <math>C(3^{3^3})</math>|| JT & BF
|-
|-
|36 || <math>= 5 \left(2^{2^{2^3}}\right) + 6 > 5.7 \times 10^{77}</math>
|36 || <math>= 5 \cdot 2^{2^{2^3}} + 6</math>
| <code>(\1 1) (\1 (1 (\\2 (2 1))))</code>
<math> > 5.7 \times 10^{77}</math>
| || <math>C(2^{2^{2^3}})</math>|| John Tromp & Bertram Felgenhauer
| <math>(\lambda 1 1) (\lambda 1 (1 (\lambda\lambda 2 (2 1))))</math>
| <math>C(2^{2^{2^3}})</math>|| JT & BF
|-
|-
|37 || <math> = BB\lambda(35)+2</math>
|37 || <math> = 2 + BB\lambda(35)</math>
|  <code>\(\1 1 1) (\\2 (2 (2 1)))</code>
|  <math>\lambda(\lambda 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math>
| || <math>\lambda x. C(3^{3^3})</math>||mxdys, tromp, dyuan, sligocki
| <math>\lambda x. C(3^{3^3})</math>||mxdys & JT & dyuan & sligocki
|-
|-
|38 || <math>\ge 5 \left(2^{2^{2^{2^2}}}\right) + 6 > 10^{10^4}</math>
|38 || <math>\ge 10^{10^4}</math>
| <code>(\1 1 1 1 1) (\\2 (2 1))</code> and
| <math>(\lambda 1 1 1 1 1) (\lambda\lambda 2 (2 1))</math>
<code>(\1 (1 1) 1 1) (\\2 (2 1))</code>
| <math>C(2^{2^{2^{2^2}}})</math>|| JT & BF
| || <math>C(2^{2^{2^{2^2}}})</math>|| John Tromp & Bertram Felgenhauer
|-
|-
|39 || <math>\ge 5 \left(3^{3^{3^3}}\right) + 6 > 10^{10^{12}}</math>
|39 || <math>\ge 10^{10^{12}}</math>
| <code>(\1 1 1 1) (\\2 (2 (2 1)))</code>  
| <math>(\lambda 1 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math>  
| || <math>C(3^{3^{3^3}})</math>|| John Tromp & Bertram Felgenhauer
| <math>C(3^{3^{3^3}})</math>|| JT & BF
|-
|-
|40 || <math> > (2\uparrow\uparrow)^{15} 33 > 10 \uparrow\uparrow\uparrow 16</math>
|40 || <math> > 10 \uparrow\uparrow\uparrow 16</math>
| <code>(\1 1 1) (\1 (\\2 (2 1)) 1)</code>
| <math>(\lambda 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math>
| || <math>\lambda x.T(k)</math> where <math>T(0)=x,\;T(n+1)=T(n)\;C(2)\;T(n)</math> and <math>k > (2\uparrow\uparrow)^{15} 33</math>|| mxdys and racheline
| <math>\lambda x.T(k)\text{ where}</math>
<math>T(0)=x</math>,  
<math>T(n+1)=T(n)\;C(2)\;T(n)</math>,
<math>k > (2\uparrow\uparrow)^{15} 33</math>
|| mxdys & racheline
|-
|-
|41 || <math>\ge 5 \left(3^{3^{85}}\right) + 6 > 10^{10^{40}}</math>
|41 || <math>\ge 10^{10^{40}}</math>
|  <code>(\1 (\1 1) 1) (\\2 (2 (2 1)))</code>
|  <math>(\lambda 1 (\lambda 1 1) 1) (\lambda\lambda 2 (2 (2 1)))</math>
| || <math>C(3^{3^{85}})</math>||mxdys
| <math>C(3^{3^{85}})</math>||mxdys
|-
|-
|42 ||<math> \ge BB\lambda(40)+2</math>
|42 ||<math> \ge 2 + BB\lambda(40)</math>
|<code>\(\1 1 1) (\1 (\\2 (2 1)) 1)</code>
|<math>\lambda(\lambda 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math>
| || ||
| ||
|-
|-
|43 ||<math> > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math>
|43 ||<math> > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math>
|<code>(\1 1) (\1 (\1 (\\2 (2 1)) 2))</code>
|<math>(\lambda 1 1) (\lambda 1 (\lambda 1 (\lambda\lambda 2 (2 1)) 2))</math>
| || <math>\lambda x.T(k)</math> where <math>T(0)=x,\;T(n+1)=T(n)\;(\lambda y.y\;C(2)\;T(n))</math> and <math>k > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math>||mxdys
| <math>\lambda x.T(k)\text{ where}</math>
<math>T(0)=x</math>,  
<math>T(n+1)=T(n)\;(\lambda y.y\;C(2)\;T(n))</math>,
<math>k > 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow\uparrow 2 \uparrow\uparrow 8</math>
||mxdys
|-
|-
|44 || <math> > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math>
|44 || <math> > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math>
| <code>(\1 1 1 1) (\1 (\\2 (2 1)) 1)</code>  
| <math>(\lambda 1 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math>  
| || <math>\lambda x.T(k)</math> where <math>T(0)=x,\;T(n+1)=T(n)\;C(2)\;T(n)</math> and <math>k > (2\uparrow\uparrow)^{(2\uparrow\uparrow)^{15} 33 - 1} 33</math>||
| <math>\lambda x.T(k)\text{ where}</math>
<math>T(0)=x</math>,
<math>T(n+1)=T(n)\;C(2)\;T(n)</math>,
<math>k > (2\uparrow\uparrow)^{(2\uparrow\uparrow)^{15} 33 - 1} 33</math>||
|-
|-
|45 || <math> \ge BB\lambda(43)+2</math>
|45 || <math> \ge 2 + BB\lambda(43)</math>
| <code>\(\1 1) (\1 (\1 (\\2 (2 1)) 2))</code>
| <math>\lambda(\lambda 1 1) (\lambda 1 (\lambda 1 (\lambda\lambda 2 (2 1)) 2))</math>
| || ||
| ||
|-
|-
|46 || <math> \ge BB\lambda(44)+2</math>
|46 || <math> \ge 2 + BB\lambda(44)</math>
|  <code>\(\1 1 1 1) (\1 (\\2 (2 1)) 1)</code>
|  <math>\lambda(\lambda 1 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math>
| || ||
| ||
|-
|-
|47 ||  
|47 ||  
|   
|   
| || ||
| ||
|-
|-
|48 || <math> > 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 10 \uparrow\uparrow\uparrow 16</math>
|48 || <math> > 10 \uparrow\uparrow\uparrow\uparrow 4</math>
| <code>(\1 1 1 1 1) (\1 (\\2 (2 1)) 1)</code>  
| <math>(\lambda 1 1 1 1 1) (\lambda 1 (\lambda\lambda 2 (2 1)) 1)</math>  
| || <math>\lambda x.T(k)</math> where <math>T(0)=x,\;T(n+1)=T(n)\;C(2)\;T(n)</math> and <math>k > (2\uparrow\uparrow)^{(2\uparrow\uparrow)^{(2\uparrow\uparrow)^{15} 33 - 1} 33 - 1} 33</math>||
| <math>\lambda x.T(k)</math> where <math>T(0)=x,\;T(n+1)=T(n)\;C(2)\;T(n)</math> and <math>k > (2\uparrow\uparrow)^{(2\uparrow\uparrow)^{(2\uparrow\uparrow)^{15} 33 - 1} 33 - 1} 33</math>||
|-
|-
|49
|49
|<math>> f_{\omega+1}\left(\frac{2 \uparrow\uparrow 6}{2}\right) > \text{Graham's number}</math>
|<math>> f_{\omega+1}\left(\frac{2 \uparrow\uparrow 6}{2}\right)</math> > Graham's number
|<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code>
|<math>(\lambda 1 1) (\lambda 1 (1 (\lambda\lambda 1 2 (\lambda\lambda 2 (2 1)))))</math>
|
|<math>C(N) \text{ for } N \approx f_{\omega+1}\left(\frac{2 \uparrow\uparrow 6}{2}\right)</math>
|<math>C(N) \text{ for } N \approx f_{\omega+1}\left(\frac{2 \uparrow\uparrow 6}{2}\right)</math>
|[https://github.com/tromp/AIT/blob/master/fast_growing_and_conjectures/melo.lam Gustavo Melo]
|[https://github.com/tromp/AIT/blob/master/fast_growing_and_conjectures/melo.lam Gustavo Melo]
Line 217: Line 210:
|...
|...
|
|
|
|
|
|-
|61
|<math>> f_{\omega^{2 \uparrow\uparrow 18-1}}\left(2\right)</math>
|<math>(\lambda 1 1 1) (\lambda 1 (1 (\lambda\lambda\lambda 1 3 2 (\lambda\lambda 2 (2 1)))))</math>
|<math>C(N) \text{ for } N \approx f_{\omega^{2 \uparrow\uparrow 18-1}}\left(2\right)</math>
|[https://tromp.github.io/blog/2026/01/28/largest-number-revised 50_ft_lock]
|-
|...
|
|
|
|
|-
|86
|<math>> f_{\omega^{\omega^{2}}}\left(2\right)</math>
|<math>(\lambda 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 1))</math>
|
|Patcail
|-
|...
|
|
|
|
Line 222: Line 238:
|
|
|-
|-
|63
|90
|<math>> f_{\omega^3}\left(2\right)</math>
|<math>> f_{\zeta_0}\left(15\right)</math>
|<code>(\1 1 (\\\1 3 2 1) 1 1 1) (\\2 (2 1))</code>
|<math>(\lambda 1 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 1))</math>
|
|
|<math>C(N) \text{ for } N \approx f_{\omega^3}\left(2\right)</math>
|Patcail
|Patcail & [https://github.com/tromp/AIT/blob/master/fast_growing_and_conjectures/melo.lam Gustavo Melo]
|-
|-
|...
|...
Line 234: Line 249:
|
|
|
|
|-
|94
|<math>> f_{\psi(\Omega_\omega)}\left(12\right)</math> > TREE(G64)
|<math>(\lambda 1 1 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 1))</math>
|
|
|Patcail
|-
|-
|92
|95
|<math>> f_{\varepsilon_0 + 1}\left(3\right)</math>
|<math>> f_{\psi(\Omega_\omega)}\left(23\right)</math>
|<math>(\lambda 1 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) (\lambda\lambda 2 (2 (2 1)))</math>
|
|
{| class="wikitable"
|Patcail
|-
|96
|<math>> f_{\psi(\Omega_\omega)}\left(f_{\omega^{\omega^{2}}}\left(2\right)\right)</math>
|<math>(\lambda 1 (\lambda 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) 1) (\lambda\lambda 2 (2 1))</math>
|
|Patcail
|-
|-
|<code>(\1 1 (\1 1) (\\1 2 1) (\1 (\2 1 2))) (\\\2 3 (\3 1 2))</code>
|}
|
|
|
|
|50_ft_lock
|
|
|
|-
|100
|<math>> f_{\psi(\Omega_\omega)+1}\left(4\right)</math>
|<math>(\lambda 1 1 (\lambda 1 (\lambda\lambda\lambda\lambda 1 4 4 4 3 2 1) 1 1 1 1) 1) (\lambda\lambda 2 (2 1))</math>
|
|Patcail
|-
|-
|...
|
|
|
|
|
|
|
|
|
|-
|331
| lim(BMS)
|<code>too large to show</code>
|
|[https://github.com/tromp/AIT/blob/master/fast_growing_and_conjectures/bms.lam Patcail & JT & 50_ft_lock]
|
|
|-
|-
Line 258: Line 297:
|<code>too large to show</code>
|<code>too large to show</code>
|
|
|
|[https://codegolf.stackexchange.com/questions/176966/golf-a-number-bigger-than-loaders-number/274634#274634 JT]
|[https://codegolf.stackexchange.com/questions/176966/golf-a-number-bigger-than-loaders-number/274634#274634 John Tromp]
|}
|}


Where <math>C(n)</math> represents the Church numeral ''n'' (<math>\lambda f x. f^n(x)</math>) written as <code>\\2 (2 ... (2 1)...)</code> with ''n'' 2s in this text representation.
Where <math>C(n)</math> represents the Church numeral ''n'' (<math>\lambda f x. f^n(x)</math>) written as <code>\\2 (2 ... (2 1)...)</code> with ''n'' 2s in this text representation.
== Oracle Busy Beaver ==
== Oracle Busy Beaver ==
While BBλ grows uncomputably fast, one can define functions that grow much faster.
While BBλ grows uncomputably fast, one can define functions that grow much faster.
Line 272: Line 311:
A 1-closed term is a term in de Bruijn notation that is closed with 1 additional lambda in front. Any variable bound to that lambda is a free variable '''f''' in the term.
A 1-closed term is a term in de Bruijn notation that is closed with 1 additional lambda in front. Any variable bound to that lambda is a free variable '''f''' in the term.


An oracle reduction step reduces '''f''' t, where t is a closed normal form of size s, to Church numeral BB(s).
An oracle reduction step reduces '''f''' t, where t is a closed normal form of size s, to Church numeral BBλ(s).


Note that this is almost identical to the oracle steps in Barendregt and Klop's "Applications of infinitary lambda calculus", except that they require t itself to be a church numeral. Allowing arbitrary closed t makes oracle steps more widely applicable while aligning with BBλ's focus on term sizes.
Note that this is almost identical to the oracle steps in Barendregt and Klop's "Applications of infinitary lambda calculus", except that they require t itself to be a church numeral. Allowing arbitrary closed t makes oracle steps more widely applicable while aligning with BBλ's focus on term sizes.
Line 290: Line 329:
|-
|-
|2
|2
|<code>1</code>
|<math>1</math>
|1
|1
|-
|-
Line 298: Line 337:
|-
|-
|4
|4
|<code>\1</code>
|<math>\lambda 1</math>
|4
|4
|-
|-
|5
|5
|<code>\2</code>
|<math>\lambda 2</math>
|5
|5
|-
|-
|6
|6
|<code>\\1</code>
|<math>\lambda \lambda 1</math>
|6
|6
|-
|-
|7
|7
|<code>\\2</code>
|<math>\lambda \lambda 2</math>
|7
|7
|-
|-
|8
|8
|<code>1 (\1)</code>
|<math>1 (\lambda 1)</math>
|<math>f(4) = 26</math>
|<math>f(4) = 26</math>
|-
|-
|9
|9
|<code>\\2</code>
|<math>\lambda \lambda 2</math>
|9
|9
|-
|-
|10
|10
|<code>1 (\\1)</code>
|<math>1 (\lambda \lambda 1)</math>
|<math>f(6) = 36</math>
|<math>f(6) = 36</math>
|-
|-
|11
|11
|<code>1 (\\2)</code>
|<math>1 (\lambda \lambda 2)</math>
|<math>f(7) = 41</math>
|<math>f(7) = 41</math>
|-
|-
|12
|12
|<code>1 (1 (\1))</code>
|<math>1 (1 (\lambda 1))</math>
|<math>f^{2}(4) = 266</math>
|<math>f^{2}(4) = 266</math>
|-
|-
|13
|13
|<code>1 (\\2)</code>
|<math>1 (\lambda \lambda 2)</math>
|<math>f(9) = 51</math>
|<math>f(9) = 51</math>
|-
|-
|14
|14
|<code>1 (1 (\\1))</code>
|<math>1 (1 (\lambda \lambda 1))</math>
|<math>f^{2}(6) = f(36) = 25 \times 2^{2^{2^{3}}}+36 > 2.85 \times 10^{78}</math>
|<math>f^{2}(6) = f(36) = 25 \times 2^{2^{2^{3}}}+36 > 2.85 \times 10^{78}</math>
|-
|-
|15
|15
|<code>1 (1 (\\2))</code>
|<math>1 (1 (\lambda \lambda 2))</math>
|<math>f^{2}(7) = f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{10^{40}}</math>
|<math>f^{2}(7) = f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{10^{40}}</math>
|-
|-
|16
|16
|<code>1 (1 (1 (\1)))</code>
|<math>1 (1 (1 (\lambda 1)))</math>
|<math>f^{3}(4) = f(266)</math>
|<math>f^{3}(4) = f(266)</math>
|-
|-
|17
|17
|<code>1 (1 (\\\2))</code>
|<math>1 (1 (\lambda \lambda \lambda 2))</math>
|<math>f^2(9) = f(51)</math>
|<math>f^2(9) = f(51)</math>
|-
|-
|18
|18
|<code>1 (\1) 1 (\1)</code>
|<math>1 (\lambda 1) 1 (\lambda 1)</math>
|<math>f^4(4) </math>
|<math>f^4(4) </math>
|-
|-
|19
|19
|<code>1 (1 (1 (\\2)))</code>
|<math>1 (1 (1 (\lambda \lambda 2)))</math>
|<math>f^3(7)</math>
|<math>f^3(7)</math>
|-
|-
|20
|20
|<code>1 (\\1) 1 (\1)</code>
|<math>1 (\lambda \lambda 1) 1 (\lambda 1)</math>
|<math>f^6(4)</math>
|<math>f^6(4)</math>
|-
|-
|21
|21
|<code>1 (\\2) 1 (\1)</code>
|<math>1 (\lambda \lambda 2) 1 (\lambda 1)</math>
|<math>f^7(4)</math>
|<math>f^7(4)</math>
|-
|-
|22
|22
|<code>1 (1 (\1)) 1 (\1)</code>
|<math>1 (1 (\lambda 1)) 1 (\lambda 1)</math>
|<math>f^{52}(4)</math>
|<math>f^{52}(4)</math>
|-
|-
Line 378: Line 417:
|-
|-
|28
|28
|<code>1 (\1) 1 (\1) 1 (\1)</code>
|<math>1 (\lambda 1) 1 (\lambda 1) 1 (\lambda 1)</math>
|<math>\ge f^{BB \lambda(f^3(4))}(4)</math>
|<math>\ge f^{BB \lambda(f^3(4))}(4)</math>
|}
|}
Line 384: Line 423:


== De Bruijn ==
== De Bruijn ==
We can use De Bruijn index instead of binary to evaluate lambda calculus size.
We can use De Bruijn index instead of binary to evaluate lambda calculus size. To get the size of an expression, convert it into De Bruijn index then count the number of lambdas / backslashes and numbers. By example, <code>(\1 1) (\\2 (1 2))</code>  is size 8 because it has 3 backslashes and 5 numbers.
 
For n < 7, BBλ_db(n) = n is trivial and can be achieved via picking any size n term already in normal form, like BBλ(m) for m ≤ 20.
{| class="wikitable"
{| class="wikitable"
!n
!BBλ_db(n)
!Value
!Value
!Champion
!Champion
Line 394: Line 435:
|≥ 7
|≥ 7
|<code>\1 1 1 1 1 1</code>
|<code>\1 1 1 1 1 1</code>
|?
|
|-
|-
|8
|8
|≥ 16
|≥ 16
|<code>(\1 1) (\\2 (1 2))</code>
|<code>(\1 1) (\\2 (1 2))</code>
|?
|[[User:Azerty|Azerty]] & John Tromp &  Bertram Felgenhauer
|-
|-
|9
|9
|≥ 68
|≥ 68
|<code>(\1 1) (\\2 (2 (1 2)))</code>
|<code>(\1 1) (\\2 (2 (1 2)))</code>
|?
|John Tromp &  Bertram Felgenhauer
|-
|-
|10
|10
|<math>> 7.625 \times 10^{12}</math>
|<math>\ge 3 \uparrow\uparrow 3 + 3 > 7.625 \times 10^{12}</math>
|<code>(\1 1 1) (\\2 (2 (2 1)))</code>
|<code>(\1 1 1) (\\2 (2 (2 1)))</code>
|?
|
|-
|-
|11
|11
|<math>> 10^{7.625 \times 10^{12}}</math>
|<math>\ge 3 \uparrow\uparrow 4 + 3 > 10^{10^{12}}</math>
|<code>(\1 1 1 1) (\\2 (2 (2 1)))</code>
|<code>(\1 1 1 1) (\\2 (2 (2 1)))</code>
|?
|
|-
|-
|12
|12
|<math>> 10 {\uparrow}^{3} 16</math>
|<math>> 10 {\uparrow}^{3} 16</math>
|<code>(\1 1 1) (\1 (\\2 (2 1)) 1)</code>
|<code>(\1 1 1) (\1 (\\2 (2 1)) 1)</code>
|?
|mxdys and racheline
|-
|-
|13
|13
|<math>> 10 {\uparrow}^{3} 10 {\uparrow}^{3} 10 {\uparrow}^{2} 6</math>
|<math>> 10 {\uparrow}^{3} 10 {\uparrow}^{3} 10 {\uparrow}^{2} 6</math>
|<code>(\1 1) (\1 (\1 (\\2 (2 1)) 2))</code>
|<code>(\1 1) (\1 (\1 (\\2 (2 1)) 2))</code>
|?
|mxdys
|-
|-
|14
|14
|<math>> 10 {\uparrow}^{3} 10 {\uparrow}^{3} 10 {\uparrow}^{3} 16</math>
|<math>> 10 {\uparrow}^{3} 10 {\uparrow}^{3} 10 {\uparrow}^{3} 16</math>
|<code>(\1 1 1 1 1) (\1 (\\2 (2 1)) 1)</code>
|<code>(\1 1 1 1 1) (\1 (\\2 (2 1)) 1)</code>
|?
|
|-
|-
|15
|15
|<math>> f_{\omega+1}(10^{10^{19,727}})</math>
|<math>> f_{\omega+1}(2 \uparrow\uparrow 6)</math>
|<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code>
|<code>(\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))</code>
|?
|[https://github.com/tromp/AIT/blob/master/fast_growing_and_conjectures/melo.lam Gustavo Melo]
|-
|18
|<math>> f_{\omega^\omega}(2 \uparrow\uparrow 18)</math>
|<code>(\1 1 1) (\1 (1 (\\\1 3 2 (\\2 (2 1)))))</code>
|[https://tromp.github.io/blog/2026/01/28/largest-number-revised 50_ft_lock]
|-
|22
|<math>> f_{\omega^{\omega+2}}(2)</math>
|<code>(\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))</code>
|Patcail
|-
|-
|23
|23
|<math>> f_{\omega^2}(4)</math>
|<math>> f_{\zeta_0}(15)</math>
|<code>(\1 1 (\\1 (\\1 2 1) 2 1) (\1 1) 1) 1) (\\2 (2 1))</code>
|<code>(\1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))</code>
|?
|Patcail
|-
|-
|24
|24
|<math>> f_{\omega^2}(27)</math>
|<math>> f_{\psi(\Omega_\omega)}(12)</math>
|<code>(\1 1 (\\1 (\\1 2 1) 2 1) (\1 1) 1) 1) (\\2 (2 (2 1)))</code>
|<code>(\1 1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1))</code>
|?
|Patcail
|-
|-
|25
|25
|<math>> f_{\omega^\omega}(4)</math>
|<math>> f_{\psi(\Omega_\omega)}(f_{\omega^{\omega+2}}(2))</math>
|<code>(\1 1 (\\\1 3 2 1) (\\1 2 1) (\1 1) 1) (\\\2 (2 1))</code>
|<code>(\1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1))</code>
|?
|Patcail
|-
|-
|26
|26
|<math>> f_{\omega^\omega}(27)</math>
|<math>> f_{\psi(\Omega_\omega+1)}(4)</math>
|<code>(\1 1 (\\\1 3 2 1) (\\1 2 1) (\1 1) 1) (\\\2 (2 (2 1)))</code>
|<code>(\1 1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1))</code>
|?
|Patcail
|-
|27
|<math>> f_{\omega^\omega}(10^{12})</math>
|<code>(\1 1 1 (\\\1 3 2 1) (\\1 2 1) (\1 1) 1) (\\\2 (2 (2 1)))</code>
|?
|-
|28
|<math>> f_{\omega^\omega}(10^{10^{12}})</math>
|<code>(\1 1 1 1 (\\\1 3 2 1) (\\1 2 1) (\1 1) 1) (\\\2 (2 (2 1)))</code>
|?
|-
|34
|<math>> f_{\omega^{\omega^\omega}}(4)</math>
|<code>(\1 1 (\\\\1 4 3 2 1) (\\\1 3 2 1) (\\1 2 1) (\1 1) 1) (\\\2 (2 1))</code>
|?
|}
|}


Line 475: Line 511:


* https://oeis.org/A333479
* https://oeis.org/A333479
* [https://tromp.github.io/blog/2023/11/24/largest-number The largest number representable in 64 bits]. 24 Nov 2023. John Tromp.
* [https://tromp.github.io/blog/2026/01/28/largest-number-revised The largest number representable in 64 bits]. 28 Jan 2026. John Tromp.
* [https://tromp.github.io/cl/Binary_lambda_calculus.html Binary Lambda Calculus]. John Tromp.
* [https://gist.github.com/tromp/86b3184f852f65bfb814e3ab0987d861 Binary Lambda Calculus]. John Tromp.
* https://github.com/tromp/AIT/tree/master/BB
* https://github.com/tromp/AIT/tree/master/BB
[[category:Functions]]
[[category:Functions]]

Latest revision as of 17:39, 8 February 2026

Busy Beaver for lambda calculus (BBλ) is a variation of the Busy Beaver problem for lambda calculus invented by John Tromp. BBλ(n) = the maximum normal form size of any closed lambda term of size n. Like the traditional Busy Beaver functions, it is uncomputable (and in fact grows faster than any computable function). If you are not familiar with lambda calculus and beta-reduction, it is recommended to start with that article.

Size is measured in bits using Binary Lambda Calculus which is a binary prefix-free encoding for all closed lambda calculus terms.

Analogy to Turing machines

We evaluate terms by applying beta-reductions until they reach a normal form. As an analogy to Turing machines:

  • Lambda terms are like TM configurations (tape + state + position).
  • Applying beta-reduction to a term is like taking a TM step.
  • A term is in normal form if no beta-reductions can be applied. This is like saying the term has halted.
  • A term may or may not be reducible to a normal form. If it is, this is like saying the term halts.
  • Determining whether a term is reducible to a normal form is an undecidable problem equivalent to the halting problem.

Note: That unlike for Turing machines, evaluating lambda terms is non-deterministic. Specifically, there may be multiple beta-reductions possible in a given term. However, if a term can be reduced to a normal form, that normal form is unique. It is not possible to reduce the original term to any different normal form. A term is strongly normalizing if any choice of beta-reductions will lead to this normal form and weakly normalizing if there exist divergent reduction paths which never reach the normal form.

Proof of Uncomputability

The proof that BBλ(n) is uncomputable is very similar to Radó's original proof that Σ(n) is uncomputable. Proof by contradiction:

Assume BBλ is computable and so there exists a term f which computes it on Church numerals. In other words: for all n: (fCn) beta reduces to normal form CBBλ(n) (where Cn denotes the Church numeral n). Denote the binary lambda encoded size of f as k. Consider the term f(C2Cn) which has size 2+k+2+(5×2+6)+(5n+6)=5n+k+26 bits. This term reduces to CBBλ(n2) which has size 5BBλ(n2)+6 bits. But for sufficiently large n, n2>5n+k+26 and so 5BBλ(n2)+6>BBλ(5n+k+26). But this is a contradiction, we've found a 5n+k+26 bit term which reduces to a normal form larger than BBλ(5n+k+26).

Thus BBλ(n) is uncomputable. A variation of this argument shows that BBλ(n) eventually dominates all computable functions.

Binary Lambda Encoding

A lambda term using De Bruijn indexes is defined inductively as:

  • Variables: For any n+, Var(n) is a term. It represents a variable bound by the lambda expression n above this one (the De Bruijn index). It is typically written simply as n.
  • Lambdas: For any term T, Lam(T) is a term. It represents a unary function with function body T. It is typically written λT or \T.
  • Applications: For any terms T, U, App(T, U) is a term. It represents applying function T to argument U. It is typically written (T U).

We can think of this as a tree where each variable is a leaf, a lambda is a node with one child and applications are nodes with 2 children. A term is closed if every variable is bound. In other words, for every Var(n) leaf node, there exists n Lam() nodes above it in the tree of the term.

Encoding (blc()) is defined recursively: blc(Var(n))=1n0blc(Lam(T))=00blc(T)blc(App(T,U))=01blc(T)blc(U)

For example, the Church numeral 2: λfx.(f(fx)) = \\(2 (2 1)) = Lam(Lam(App(Var(2), App(Var(2), Var(1)))) is encoded as 00 00 01 110 01 110 10 or simply 0000011100111010 (spaces are not part of the encoding, only used for demonstration purposes) and thus has size 16 bits.

Text Encoding conventions

For human readability, a text encoding and set of conventions is used in this article. As described earlier we encode a lambda term as:

  • Var(n) -> n
  • Lam(T) -> (\T)
  • App(T, U) -> (T U)

However, parentheses are also dropped in certain cases by convention:

  • The outermost parentheses are dropped: Lam(1) -> \1 and App(1, 2) -> 1 2.
  • Parentheses are dropped immediately inside a Lam: Lam(Lam(1)) -> \\1 and Lam(App(1, 1)) -> \1 1.
  • Parentheses are dropped in nested Apps using left associativity: App(App(1, 2), 3) -> 1 2 3. (Note: parentheses are still required for App(1, App(2, 3)) -> 1 (2 3)).

This is the convention used in John Tromp's code and so is used here for consistency.

Champions

There are no closed lambda terms of size 0, 1, 2, 3 or 5 and so BBλ(n) is not defined for those values. The smallest closed lambda term is \1 which has size 4.

For the rest of n ≤ 20: BBλ(n) = n is trivial and can be achieved via picking any n bit term already in normal form. For example \\...\1 and \\...\2 with k lambdas has size 2k+2 and 2k+3 respectively (for k ≥ 1 and k ≥ 2 respectively). In the last column, JT and BF abbreviate John Tromp and Bertram Felgenhauer.

n BBλ(n) Champion Normal form Discovered By
21 = 22 λ(λ11)(1(λ2)) λ(1(λ2))(1(λ2)) JT & BF
22 = 24 λ(λ111)(11) λ(11)(11)(11) JT & BF
23 = 26 λ(λ11)(1(λλ2)) λ(1(λλ2))(1(λλ2)) JT & BF
24 = 30 λ(λ111)(1(λ1)) λ(1(λ1))(1(λ1))(1(λ1)) JT & BF
25 = 42 λ(λ11)(λ1(21)) λ1(λ1(21))(1(1(λ1(21)))) JT & BF
26 = 52 (λ11)(λλ2(12)) λλ2(λλ2(12))(1(2(λλ2(12)))) JT & BF
27 = 44 λλ(λ11)(λ1(21)) λλ1(λ1(21))(1(1(λ1(21)))) JT & BF
28 = 58 λ(λ11)(λ1(2(λ2)))) λ1(λλ1(3(λ2)))(1(λ2(λλ1(4(λ2))))) JT & BF
29 = 223 λ(λ11)(λ1(1(21))) λB(B(1B)) where

B=(A(A(1A))), A=(1(λ1(1(21))))

JT & BF
30 = 160 (λ111)(λλ2(12))

λλ2BA(1(2BA)) where B=(λλ2A(1(2A))), A=(λλ2(12))

JT & BF
31 = 267 (λ11)(λλ2(2(12)))

λλ2A(2A(C(2A))) where C=(2A(2A(1B(2A)))), B=(λ3A(3A(1(3A)))), A=(λλ2(2(12)))

JT & BF
32 = 298 λ(λ11)(λ1(1(2(λ2)))) JT & BF
33 = 1812 λ(λ11)(λ1(1(1(21))))

λC(C(C(1C))) where C=(B(B(B(1B))), B=(A(A(A(1A))), A=(1(λ1(1(1(21)))))

JT & BF
34 =327686 (λ1111)(λλ2(21)) C(2222) JT & BF
35 =5333+6

>3.8×1013

(λ111)(λλ2(2(21))) C(333) JT & BF
36 =52223+6

>5.7×1077

(λ11)(λ1(1(λλ2(21)))) C(2223) JT & BF
37 =2+BBλ(35) λ(λ111)(λλ2(2(21))) λx.C(333) mxdys & JT & dyuan & sligocki
38 10104 (λ11111)(λλ2(21)) C(22222) JT & BF
39 101012 (λ1111)(λλ2(2(21))) C(3333) JT & BF
40 >1016 (λ111)(λ1(λλ2(21))1) λx.T(k) where

T(0)=x, T(n+1)=T(n)C(2)T(n), k>(2)1533

mxdys & racheline
41 101040 (λ1(λ11)1)(λλ2(2(21))) C(3385) mxdys
42 2+BBλ(40) λ(λ111)(λ1(λλ2(21))1)
43 >2228 (λ11)(λ1(λ1(λλ2(21))2)) λx.T(k) where

T(0)=x, T(n+1)=T(n)(λy.yC(2)T(n)), k>2228

mxdys
44 >101016 (λ1111)(λ1(λλ2(21))1) λx.T(k) where

T(0)=x, T(n+1)=T(n)C(2)T(n), k>(2)(2)1533133||

45 2+BBλ(43) λ(λ11)(λ1(λ1(λλ2(21))2))
46 2+BBλ(44) λ(λ1111)(λ1(λλ2(21))1)
47
48 >104 (λ11111)(λ1(λλ2(21))1) λx.T(k) where T(0)=x,T(n+1)=T(n)C(2)T(n) and k>(2)(2)(2)1533133133
49 >fω+1(262) > Graham's number (λ11)(λ1(1(λλ12(λλ2(21))))) C(N) for Nfω+1(262) Gustavo Melo
...
61 >fω2181(2) (λ111)(λ1(1(λλλ132(λλ2(21))))) C(N) for Nfω2181(2) 50_ft_lock
...
86 >fωω2(2) (λ1(λλλλ1444321)1111)(λλ2(21)) Patcail
...
90 >fζ0(15) (λ11(λλλλ1444321)1111)(λλ2(21)) Patcail
...
94 >fψ(Ωω)(12) > TREE(G64) (λ111(λλλλ1444321)1111)(λλ2(21)) Patcail
95 >fψ(Ωω)(23) (λ11(λλλλ1444321)1111)(λλ2(2(21))) Patcail
96 >fψ(Ωω)(fωω2(2)) (λ1(λ1(λλλλ1444321)1111)1)(λλ2(21)) Patcail
100 >fψ(Ωω)+1(4) (λ11(λ1(λλλλ1444321)1111)1)(λλ2(21)) Patcail
331 lim(BMS) too large to show Patcail & JT & 50_ft_lock
1850 > Loader's number too large to show JT

Where C(n) represents the Church numeral n (λfx.fn(x)) written as \\2 (2 ... (2 1)...) with n 2s in this text representation.

Oracle Busy Beaver

While BBλ grows uncomputably fast, one can define functions that grow much faster.

Let's define a higher order busy beaver function BBλ1 by providing oracle access to BBλ.

This is done by enriching the set of terms and possible reduction steps considered in the BB definition.

A 1-closed term is a term in de Bruijn notation that is closed with 1 additional lambda in front. Any variable bound to that lambda is a free variable f in the term.

An oracle reduction step reduces f t, where t is a closed normal form of size s, to Church numeral BBλ(s).

Note that this is almost identical to the oracle steps in Barendregt and Klop's "Applications of infinitary lambda calculus", except that they require t itself to be a church numeral. Allowing arbitrary closed t makes oracle steps more widely applicable while aligning with BBλ's focus on term sizes.

Now let BBλ1 be the maximum beta/oracle normal form size of any 1-closed lambda term of size n, or 0 if no 1-closed term of size n exists. This appears as sequence A385712 in the OEIS.

The following table shows values of BBλ1 up to 22 plus a lower bound for 28, with larger values expressed in terms of function f(n)=6+5×BBλ(n):

n champion BBλ1
1 0
2 1 1
3 0
4 λ1 4
5 λ2 5
6 λλ1 6
7 λλ2 7
8 1(λ1) f(4)=26
9 λλ2 9
10 1(λλ1) f(6)=36
11 1(λλ2) f(7)=41
12 1(1(λ1)) f2(4)=266
13 1(λλ2) f(9)=51
14 1(1(λλ1)) f2(6)=f(36)=25×2223+36>2.85×1078
15 1(1(λλ2)) f2(7)=f(41)25×3385+36>101040
16 1(1(1(λ1))) f3(4)=f(266)
17 1(1(λλλ2)) f2(9)=f(51)
18 1(λ1)1(λ1) f4(4)
19 1(1(1(λλ2))) f3(7)
20 1(λλ1)1(λ1) f6(4)
21 1(λλ2)1(λ1) f7(4)
22 1(1(λ1))1(λ1) f52(4)
...
28 1(λ1)1(λ1)1(λ1) fBBλ(f3(4))(4)

We can generalize BBλ1 to BBλα for ordinals α by using oracle function BBλα-1 for successor ordinal a, and oracle function (\n -> BBλα[n](n)) for limit ordinal α, assuming well-defined fundamental sequences up to α. Because of limited oracle inputs, all oracle busy beavers have identical values up to n=11.

De Bruijn

We can use De Bruijn index instead of binary to evaluate lambda calculus size. To get the size of an expression, convert it into De Bruijn index then count the number of lambdas / backslashes and numbers. By example, (\1 1) (\\2 (1 2)) is size 8 because it has 3 backslashes and 5 numbers.

For n < 7, BBλ_db(n) = n is trivial and can be achieved via picking any size n term already in normal form, like BBλ(m) for m ≤ 20.

BBλ_db(n) Value Champion Discovered By
7 ≥ 7 \1 1 1 1 1 1
8 ≥ 16 (\1 1) (\\2 (1 2)) Azerty & John Tromp & Bertram Felgenhauer
9 ≥ 68 (\1 1) (\\2 (2 (1 2))) John Tromp & Bertram Felgenhauer
10 33+3>7.625×1012 (\1 1 1) (\\2 (2 (2 1)))
11 34+3>101012 (\1 1 1 1) (\\2 (2 (2 1)))
12 >10316 (\1 1 1) (\1 (\\2 (2 1)) 1) mxdys and racheline
13 >1031031026 (\1 1) (\1 (\1 (\\2 (2 1)) 2)) mxdys
14 >10310310316 (\1 1 1 1 1) (\1 (\\2 (2 1)) 1)
15 >fω+1(26) (\1 1) (\1 (1 (\\1 2 (\\2 (2 1))))) Gustavo Melo
18 >fωω(218) (\1 1 1) (\1 (1 (\\\1 3 2 (\\2 (2 1))))) 50_ft_lock
22 >fωω+2(2) (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1)) Patcail
23 >fζ0(15) (\1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1)) Patcail
24 >fψ(Ωω)(12) (\1 1 1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) (\\2 (2 1)) Patcail
25 >fψ(Ωω)(fωω+2(2)) (\1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1)) Patcail
26 >fψ(Ωω+1)(4) (\1 1 (\1 (\\\\1 4 4 4 3 2 1) 1 1 1 1) 1) (\\2 (2 1)) Patcail

See Also