BB(2,6): Difference between revisions
→Top Halters: fix formatting |
m →Phase 2: left-align new decider columns |
||
| (20 intermediate revisions by 4 users not shown) | |||
| Line 4: | Line 4: | ||
== Top Halters == | == Top Halters == | ||
The scores are given using [[wikipedia:Knuth's_up-arrow_notation|Knuth's up-arrow notation]] with an extension to decimal tetration<ref>Shawn Ligocki. 2022. [https://www.sligocki.com/2022/06/25/ext-up-notation.html "Extending Up-arrow Notation"]</ref>. The 20 highest known scoring machines are: | |||
The scores are given using [[wikipedia:Knuth's_up-arrow_notation|Knuth's up-arrow notation]] with an extension to decimal tetration<ref>Shawn Ligocki. 2022. [https://www.sligocki.com/2022/06/25/ext-up-notation.html "Extending Up-arrow Notation"]</ref>. The highest known scoring machines are: | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
| Line 15: | Line 14: | ||
|10 ↑↑↑ 3 | |10 ↑↑↑ 3 | ||
|Pavel Kropitz | |Pavel Kropitz | ||
|- | |||
|{{TM|1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB|halt}} | |||
|10 ↑↑ 19892.08 | |||
|Peacemaker II | |||
|- | |- | ||
|{{TM|1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ|halt}} | |{{TM|1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ|halt}} | ||
| Line 52: | Line 55: | ||
|Shawn Ligocki | |Shawn Ligocki | ||
|- | |- | ||
|{{TM|1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ | |{{TM|1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ|halt}} | ||
|10 ↑↑ 17.53 | |10 ↑↑ 17.53 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA | |{{TM|1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA|halt}} | ||
|10 ↑↑ 17.08 | |10 ↑↑ 17.08 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA | |{{TM|1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA|halt}} | ||
|10 ↑↑ 15.44 | |10 ↑↑ 15.44 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA | |{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA|halt}} | ||
|10 ↑↑ 14.35 | |10 ↑↑ 14.35 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA | |{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA|halt}} | ||
|10 ↑↑ 14.17 | |10 ↑↑ 14.17 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA | |{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA|halt}} | ||
|10 ↑↑ 14.05 | |10 ↑↑ 14.05 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA | |{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA|halt}} | ||
|10 ↑↑ 13.69 | |10 ↑↑ 13.69 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ | |{{TM|1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ|halt}} | ||
|10 ↑↑ 12.42 | |10 ↑↑ 12.42 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ | |{{TM|1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ|halt}} | ||
|10 ↑↑ 11.70 | |10 ↑↑ 11.70 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|} | |||
All decimal places are truncated. | |||
== Phase 1 == | |||
The initial phase of enumeration and reduction of [[holdouts]] took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Runtime (hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
!rowspan="2" |Done by | |||
!colspan="2" |Holdout TMs | |||
!rowspan="2" |<math>*^1</math> | |||
!rowspan="2" |<math>*^2</math> | |||
!colspan="2" |TMs/sec/core | |||
!rowspan="2" |Description | |||
!rowspan="2" |Data | |||
|- | |- | ||
| | |style="text-align:left" |Terry Ligocki | ||
|10 | |2,278,655,696 | ||
|Andrew Ducharme | |2,109,114,609 | ||
|7.44% | |||
|40.9 | |||
|1,150.90 | |||
|15,468.23 | |||
|style="text-align:left" |Reverse_Engineer_Filter.py | |||
|style="text-align:left", rowspan="100" |[https://drive.google.com/drive/folders/1p9b5g-Id3WEMUYIwEnaKWRBGIW66ADjM?usp=drive_link Google Drive] | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|2,109,114,609 | |||
|683,067,538 | |||
|67.61% | |||
|452.8 | |||
|874.77 | |||
|1,293.79 | |||
|style="text-align:left" |CPS_Filter.py --block-size=1 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|683,067,538 | |||
|210,993,434 | |||
|69.11% | |||
|396.4 | |||
|330.85 | |||
|478.72 | |||
|style="text-align:left" |CPS_Filter.py --block-size=2 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|210,993,434 | |||
|141,680,232 | |||
|32.85% | |||
|273.9 | |||
|70.29 | |||
|213.97 | |||
|style="text-align:left" |CPS_Filter.py --block-size=3 --max_steps=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|141,680,232 | |||
|66,029,536 | |||
|53.40% | |||
|486.6 | |||
|43.18 | |||
|80.87 | |||
|style="text-align:left" |Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|66,029,536 | |||
|46,119,004 | |||
|30.15% | |||
|167.4 | |||
|33.05 | |||
|109.59 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|46,119,004 | |||
|39,034,142 | |||
|15.36% | |||
|170.1 | |||
|11.57 | |||
|75.34 | |||
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|39,034,142 | |||
|29,109,512 | |||
|25.43% | |||
|2,221.6 | |||
|1.24 | |||
|4.88 | |||
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|29,109,512 | |||
|24,536,819 | |||
|15.71% | |||
|384.2 | |||
|3.31 | |||
|21.05 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|24,536,819 | |||
|22,302,296 | |||
|9.11% | |||
|1,047.5 | |||
|0.59 | |||
|6.51 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|} | |||
== Phase 2 == | |||
When Phase 1 was completed, a set of deciders/parameters were run to reduce the number of holdout TMs. The details are given in the various Stages below. | |||
=== Stage 1 === | |||
Andrew Ducharme ran another pass of "lr_enum_continue" with the maximum number of steps set to 10 million. The holdouts were reduced from ~22.3M TMs to ~20.4M TMs (a 8.72% reduction). The entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with specific C++ code, lr_enum_continue, and a specific parallel queuing system, Slurm: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Runtime (hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
!rowspan="2" |Done by | |||
!colspan="2" |Holdout TMs | |||
!rowspan="2" |<math>*^1</math> | |||
!rowspan="2" |<math>*^2</math> | |||
!colspan="2" |TMs/sec/core | |||
!rowspan="2" |Description | |||
!rowspan="2" |Data | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|22,302,296 | |||
|20,358,011 | |||
|8.72% | |||
|1,350.0 | |||
|0.40 | |||
|4.59 | |||
|style="text-align:left" |lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false | |||
|style="text-align:left" rowspan="50"|[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive] | |||
|} | |} | ||
== | === Stage 2 === | ||
Starting from Terry Ligocki' | Starting from the results of Stage 1, Terry Ligocki ran @mxdys' C++ code, "main.exe", using a variety of its deciders with various parameters. A total of 50 variations were run. The holdouts were reduced from ~20.4M TMs to ~907K TMs (a 95.5% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation: | ||
(done to reduce column size: | (done to reduce column size: | ||
| Line 118: | Line 259: | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |20,358,011 | ||
| | |19,500,847 | ||
| | |4.21% | ||
| | |22.0 | ||
| | |10.84 | ||
| | |257.42 | ||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run | |style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run | ||
|rowspan=" | |style="text-align:left" rowspan="50"|[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive] | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |19,500,847 | ||
| | |18,747,861 | ||
| | |3.86% | ||
| | |86.0 | ||
| | |2.43 | ||
| | |63.01 | ||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run | |style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |18,747,861 | ||
| | |4,811,076 | ||
| | |74.34% | ||
| | |47.0 | ||
| | |82.33 | ||
| | |110.75 | ||
|style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run | |style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |4,811,076 | ||
| | |2,982,075 | ||
| | |38.02% | ||
| | |17.1 | ||
| | |29.74 | ||
| | |78.22 | ||
|style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run | |style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |2,982,075 | ||
| | |2,897,340 | ||
|2. | |2.84% | ||
| | |15.2 | ||
|1. | |1.55 | ||
| | |54.64 | ||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run | |style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |2,897,340 | ||
| | |2,850,781 | ||
|1. | |1.61% | ||
|16. | |16.7 | ||
|0. | |0.77 | ||
| | |48.17 | ||
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run | |style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |2,850,781 | ||
| | |2,759,635 | ||
| | |3.20% | ||
|13. | |13.7 | ||
|1. | |1.85 | ||
| | |58.01 | ||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run | |style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |2,759,635 | ||
| | |1,953,426 | ||
| | |29.21% | ||
| | |13.6 | ||
| | |16.48 | ||
| | |56.42 | ||
|style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run | |style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |1,953,426 | ||
| | |1,855,545 | ||
| | |5.01% | ||
| | |2.4 | ||
| | |11.18 | ||
| | |223.14 | ||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run | |style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
| | |1,855,545 | ||
|1, | |1,647,269 | ||
| | |11.22% | ||
| | |6.6 | ||
| | |8.80 | ||
| | |78.40 | ||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run | |style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
|1, | |1,647,269 | ||
|1, | |1,608,166 | ||
|2. | |2.37% | ||
| | |3.4 | ||
| | |3.20 | ||
| | |134.96 | ||
|style="text-align:left" |chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |style="text-align:left" |chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
|1, | |1,608,166 | ||
|1, | |1,585,745 | ||
|1. | |1.39% | ||
| | |9.6 | ||
|0. | |0.65 | ||
| | |46.35 | ||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run | |style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
|1, | |1,585,745 | ||
|1, | |1,555,673 | ||
|1. | |1.90% | ||
|7 | |5.7 | ||
|1. | |1.47 | ||
| | |77.73 | ||
|style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run | |style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run | ||
|- | |- | ||
|style="text-align:left" |Terry Ligocki | |style="text-align:left" |Terry Ligocki | ||
|1, | |1,555,673 | ||
|1, | |1,428,534 | ||
| | |8.17% | ||
| | |9.3 | ||
|3. | |3.78 | ||
| | |46.31 | ||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run | |style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run | ||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,428,534 | |||
|1,340,964 | |||
|6.13% | |||
|0.8 | |||
|29.70 | |||
|484.55 | |||
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 10000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,340,964 | |||
|1,286,439 | |||
|4.07% | |||
|0.8 | |||
|18.40 | |||
|452.56 | |||
|style="text-align:left" |chr_LRUH 2 chr_H 2 MitM_CTL NG maxT 3000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,286,439 | |||
|1,273,911 | |||
|0.97% | |||
|0.8 | |||
|4.20 | |||
|430.88 | |||
|style="text-align:left" |chr_LRUH 4 chr_H 0 MitM_CTL NG maxT 30000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,273,911 | |||
|1,265,198 | |||
|0.68% | |||
|0.8 | |||
|2.88 | |||
|420.73 | |||
|style="text-align:left" |chr_LRUH 3 chr_H 1 MitM_CTL NG maxT 3000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,265,198 | |||
|1,258,925 | |||
|0.50% | |||
|0.9 | |||
|1.99 | |||
|400.83 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,258,925 | |||
|1,242,136 | |||
|1.33% | |||
|0.8 | |||
|5.51 | |||
|412.84 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 1 tH 0 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,242,136 | |||
|1,231,731 | |||
|0.84% | |||
|1.0 | |||
|2.78 | |||
|331.77 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 2 mod 2 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,231,731 | |||
|1,216,646 | |||
|1.22% | |||
|1.0 | |||
|4.15 | |||
|338.72 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 3000 LRUH 12 H 0 tH 2 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,216,646 | |||
|1,214,294 | |||
|0.19% | |||
|0.9 | |||
|0.76 | |||
|393.03 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 30000 H 2 mod 3 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,214,294 | |||
|1,213,431 | |||
|0.07% | |||
|0.9 | |||
|0.28 | |||
|391.30 | |||
|style="text-align:left" |chr_LRUH 4 chr_H 2 MitM_CTL NG maxT 30000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,213,431 | |||
|1,211,390 | |||
|0.17% | |||
|1.1 | |||
|0.52 | |||
|307.13 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 8 H 1 tH 1 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,211,390 | |||
|1,209,989 | |||
|0.12% | |||
|1.1 | |||
|0.35 | |||
|306.09 | |||
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 100000 NG_n 4 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,209,989 | |||
|1,209,974 | |||
|0.00% | |||
|0.9 | |||
|0.00 | |||
|381.42 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 16 H 1 tH 0 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,209,974 | |||
|1,201,890 | |||
|0.67% | |||
|2.5 | |||
|0.90 | |||
|134.19 | |||
|style="text-align:left" |chr_LRUH 16 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,201,890 | |||
|1,200,086 | |||
|0.15% | |||
|1.3 | |||
|0.37 | |||
|248.36 | |||
|style="text-align:left" |chr_LRUH 10 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,200,086 | |||
|1,199,734 | |||
|0.03% | |||
|1.2 | |||
|0.08 | |||
|270.32 | |||
|style="text-align:left" |chr_asth 0 chr_LRUH 3 chr_H 3 MitM_CTL NG maxT 100000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,199,734 | |||
|1,198,893 | |||
|0.07% | |||
|2.3 | |||
|0.10 | |||
|147.66 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 2 mod 6 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,198,893 | |||
|1,165,493 | |||
|2.79% | |||
|4.5 | |||
|2.05 | |||
|73.44 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 30000 H 4 mod 4 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,165,493 | |||
|1,153,863 | |||
|1.00% | |||
|9.3 | |||
|0.35 | |||
|34.88 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 0 tH 1 n 4 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,153,863 | |||
|1,144,711 | |||
|0.79% | |||
|3.7 | |||
|0.69 | |||
|87.51 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 5 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,144,711 | |||
|1,127,789 | |||
|1.48% | |||
|7.9 | |||
|0.60 | |||
|40.26 | |||
|style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 30000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,127,789 | |||
|1,124,762 | |||
|0.27% | |||
|4.7 | |||
|0.18 | |||
|66.75 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 3 H 0 tH 1 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,124,762 | |||
|1,117,226 | |||
|0.67% | |||
|5.6 | |||
|0.37 | |||
|55.36 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 12 H 0 tH 1 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,117,226 | |||
|1,109,057 | |||
|0.73% | |||
|7.7 | |||
|0.30 | |||
|40.49 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 100000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,109,057 | |||
|1,083,097 | |||
|2.34% | |||
|11.4 | |||
|0.63 | |||
|27.06 | |||
|style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 30000 NG_n 5 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,083,097 | |||
|1,077,833 | |||
|0.49% | |||
|11.2 | |||
|0.13 | |||
|26.81 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 100000 NG_n 4 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,077,833 | |||
|1,066,795 | |||
|1.02% | |||
|24.1 | |||
|0.13 | |||
|12.40 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 2 tH 1 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,066,795 | |||
|1,039,229 | |||
|2.58% | |||
|52.6 | |||
|0.15 | |||
|5.64 | |||
|style="text-align:left" |chr_LRUH 14 chr_H 6 MitM_CTL NG maxT 100000 NG_n 11 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,039,229 | |||
|1,019,286 | |||
|1.92% | |||
|43.5 | |||
|0.13 | |||
|6.63 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,019,286 | |||
|993,556 | |||
|2.52% | |||
|66.8 | |||
|0.11 | |||
|4.24 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 8 H 2 tH 1 n 6 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|993,556 | |||
|985,718 | |||
|0.79% | |||
|78.3 | |||
|0.03 | |||
|3.53 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 1 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|985,718 | |||
|981,095 | |||
|0.47% | |||
|83.7 | |||
|0.02 | |||
|3.27 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 0 n 9 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|981,095 | |||
|975,912 | |||
|0.53% | |||
|79.4 | |||
|0.02 | |||
|3.43 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 1 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|975,912 | |||
|974,180 | |||
|0.18% | |||
|84.6 | |||
|0.01 | |||
|3.20 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 4 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|974,180 | |||
|971,254 | |||
|0.30% | |||
|96.9 | |||
|0.01 | |||
|2.79 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 12 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|971,254 | |||
|970,101 | |||
|0.12% | |||
|105.6 | |||
|0.00 | |||
|2.56 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 12 H 0 tH 0 n 18 run | |||
|} | |||
=== Stage 3 === | |||
Starting from the results of Stage 2, Andrew Ducharme ran "lr_enum_continue" with the maximum number of steps set to 100 million, then "Enumerate.py" with various parameters. A total of 8 Enumerate variations were run. The holdouts were reduced from ~970K TMs to ~870K TMs (a 10.31% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Compute Time (core-hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
!rowspan="2" |Done by | |||
!colspan="2" |Holdout TMs | |||
!rowspan="2" |<math>*^1</math> | |||
!rowspan="2" |<math>*^2</math> | |||
!colspan="2" |TMs/sec/core | |||
!rowspan="2" |Description | |||
!rowspan="2" |Data | |||
|- | |||
!Input | |||
!Output | |||
!<math>*^3</math> | |||
!<math>*^4</math> | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|970,101 | |||
|939,447 | |||
|3.16% | |||
| -- | |||
| -- | |||
| -- | |||
|style="text-align:left" |lr_enum_continue 100_000_000 steps | |||
| rowspan="10" |[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive] | |||
|- | |||
| style="text-align:left" |Andrew Ducharme | |||
|939,447 | |||
|903,224 | |||
|3.86% | |||
|440.3 | |||
|0.03 | |||
|0.59 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=4 --no-ctl --lin-steps=0 --time=2 --force --save-freq=1000 | |||
|- | |||
| style="text-align:left" |Andrew Ducharme | |||
|903,224 | |||
|895,813 | |||
|0.82% | |||
|647.7 | |||
|0.00 | |||
|0.39 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=3 --no-ctl --lin-steps=0 --time=3 --force --save-freq=1000 | |||
|- | |||
| style="text-align:left" |Andrew Ducharme | |||
|895,813 | |||
|889,838 | |||
|0.67% | |||
|609.3 | |||
|0.00 | |||
|0.41 | |||
| style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=8 --no-ctl --lin-steps=0 --time=4 --force --save-freq=1000 | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|889,838 | |||
|880,278 | |||
|1.07% | |||
|1,638.9 | |||
|0.00 | |||
|0.15 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=12 --no-ctl --lin-steps=0 --force --save-freq=1000 | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|880,278 | |||
|877,485 | |||
|0.32% | |||
|1,885.5 | |||
|0.00 | |||
|0.13 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=6 --no-ctl --lin-steps=0 --force --save-freq=1000 | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|877,485 | |||
|875,062 | |||
|0.28% | |||
|2,068.8 | |||
|0.00 | |||
|0.12 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=5 --no-ctl --lin-steps=0 --force --save-freq=1000 | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|875,062 | |||
|873,469 | |||
|0.18% | |||
|1,785.4 | |||
|0.00 | |||
|0.14 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=7 --no-ctl --lin-steps=0 --force --save-freq=1000 | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|873,469 | |||
|870,085 | |||
|0.39% | |||
|9,270.0 | |||
|0.00 | |||
|0.03 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=2 --tape-limit=500 --time=120 --no-ctl --lin-steps=0 --force --save-freq=1000 | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|870,085 | |||
|869,001 | |||
|0.12% | |||
|4,498.3 | |||
|0.00 | |||
|0.05 | |||
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=10_000_000 --block-mult=60 --tape-limit=5000 --no-ctl --lin-steps=0 --force --save-freq=1000 | |||
|- | |||
|Andrew Ducharme | |||
|869,001 | |||
|867,008 | |||
|0.23% | |||
|3997.4 | |||
|0.00 | |||
|0.06 | |||
|style="text-align:left"|Enumerate.py -r --no-steps --exp-linear-rules --max-loops=100_000_000 --block-mult=9 --tape-limit=5000 --max-steps-per-macro=100_000 --lin-steps=0 --no-ctl --force --save-freq=250 | |||
| | |||
|} | |||
The total time spent on the lr_enum_continue computation was not recorded. | |||
===== Stage 4 ===== | |||
Following the release of @mxdys's implementation of FAR deciders in C++, these deciders were applied to the 2x6 holdouts by Andrew Ducharme. The details are given in this table. including links to the Google Drive with the holdouts and solved TMs per decider: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Compute Time (core-hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
! colspan="2" |Holdout TMs | |||
! rowspan="2" |<math>*^1</math> | |||
! rowspan="2" |<math>*^2</math> | |||
! colspan="2" |TMs/sec/core | |||
! rowspan="2" |Description | |||
! rowspan="2" |Data | |||
|- | |||
!Input | |||
!Output | |||
!<math>*^3</math> | |||
!<math>*^4</math> | |||
|- | |||
|867008 | |||
|811301 | |||
|6.43% | |||
|0.043 | |||
|364.10 | |||
|5666.72 | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 2 H 1 tH 1 n 2 | |||
| rowspan="20" |[https://drive.google.com/drive/folders/18njhmOzRc67zCmVuLd0aDxl6ETBhL1gy?usp=sharing Google Drive] | |||
|- | |||
|811301 | |||
|806119 | |||
|0.64% | |||
|0.159 | |||
|9.03 | |||
|1413.42 | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 3 H 1 tH 1 n 2 | |||
|- | |||
|806119 | |||
|736690 | |||
|8.61% | |||
|0.548 | |||
|35.21 | |||
|408.78 | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 4 H 1 tH 1 n 2 | |||
|- | |||
|736690 | |||
|736504 | |||
|0.03% | |||
|0.009 | |||
|5.81 | |||
|23021.56 | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 1 H 1 tH 1 n 1 | |||
|- | |||
|736504 | |||
|735317 | |||
|0.16% | |||
|0.058 | |||
|5.71 | |||
|3540.88 | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 2 H 0 tH 0 n 2 | |||
|- | |||
|735317 | |||
|733717 | |||
|0.22% | |||
|0.341 | |||
|1.30 | |||
|599.28 | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 4 H 2 tH 2 n 2 | |||
|- | |||
|733717 | |||
|673920 | |||
|8.15% | |||
|3.8 | |||
|4.43 | |||
|54.32 | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 4 H 2 tH 2 n 4 | |||
|- | |||
|673920 | |||
|652828 | |||
|3.13% | |||
|~10 | |||
| --- | |||
| --- | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 6 H 2 tH 2 n 4 | |||
|- | |||
|652828 | |||
|645264 | |||
|1.16% | |||
|~12 | |||
| --- | |||
| --- | |||
| style="text-align:left" |FAR CPS_LRU maxT 100000 LRUH 8 H 2 tH 2 n 4 | |||
|- | |||
|645264 | |||
|641388 | |||
|0.60% | |||
|~15 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 100000 LRUH 10 H 2 tH 2 n 10 | |||
|- | |||
|641388 | |||
|635505 | |||
|0.92% | |||
|~200 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 10 H 1 tH 2 n 10 | |||
|- | |||
|635505 | |||
|616639 | |||
|2.97% | |||
| --- | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 2 H 0 tH 0 n [3-10] | |||
|- | |||
|616639 | |||
|592039 | |||
|3.99% | |||
|~700 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 3 H 0 tH 0 n [1-10] | |||
|- | |||
|592039 | |||
|576938 | |||
|2.55% | |||
|~800 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 3 H [0-1] tH [0-1] n [1-10] | |||
|- | |||
|576938 | |||
|572963 | |||
|0.69% | |||
|~1000 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 4 H 0 tH 0 n [1-10] | |||
|- | |||
|572963 | |||
|567971 | |||
|0.87% | |||
|~1000 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 4 H 2 tH 0 n [1-10] | |||
|- | |||
|567971 | |||
|566096 | |||
|0.33% | |||
|~1000 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 6 H 0 tH 0 n [1-10] | |||
|- | |||
|566096 | |||
|564290 | |||
|0.32% | |||
|~1000 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 8 H 0 tH [0,2] n [1-10] | |||
|- | |||
|564290 | |||
|559553 | |||
|0.84% | |||
|~1000 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 8 H 2 tH 1 n [1-10] | |||
|- | |||
|559553 | |||
|558039 | |||
|0.27% | |||
|~900 | |||
| --- | |||
| --- | |||
|style="text-align:left"|FAR CPS_LRU maxT 1000000 LRUH 8 H 2 tH 2 n [1-10] | |||
|} | |} | ||
==References== | |||
== References == | |||
<!-- | <!-- | ||
A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute. | A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute. | ||
--> | --> | ||
[[Category: BB Domains]] | [[Category: BB Domains]][[Category:BB(2,6)]] | ||
Latest revision as of 19:05, 2 February 2026
The 2-state, 6-symbol Busy Beaver problem, BB(2,6), is unsolved. With cryptids like Hydra in the preceding domain BB(2,5), we know that we must solve a Collatz-like problem in order to solve BB(2,6).
The current BB(2,6) champion 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch) was discovered by Pavel Kropitz in May 2023, proving the lower bound:
Top Halters
The scores are given using Knuth's up-arrow notation with an extension to decimal tetration[1]. The 20 highest known scoring machines are:
| TM | Approximate sigma score | Discoverer |
|---|---|---|
1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
10 ↑↑↑ 3 | Pavel Kropitz |
1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB (bbch)
|
10 ↑↑ 19892.08 | Peacemaker II |
1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ (bbch)
|
10 ↑↑ 91.17 | Pavel Kropitz |
1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA (bbch)
|
10 ↑↑ 70.27 | Shawn Ligocki |
1RB2LB1RZ3LA2LA4RB_1LA3RB4RB1LB5LB0RA (bbch)
|
10 ↑↑ 69.68 | Shawn Ligocki |
1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ (bbch)
|
10 ↑↑ 54.90 | Andrew Ducharme |
1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB (bbch)
|
10 ↑↑ 42.17 | Andrew Ducharme |
1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB (bbch)
|
10 ↑↑ 40.07 | Andrew Ducharme |
1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ (bbch)
|
10 ↑↑ 21.54 | Shawn Ligocki |
1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA (bbch)
|
10 ↑↑ 20.58 | Shawn Ligocki |
1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Shawn Ligocki |
1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Andrew Ducharme |
1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA (bbch)
|
10 ↑↑ 17.08 | Andrew Ducharme |
1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA (bbch)
|
10 ↑↑ 15.44 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA (bbch)
|
10 ↑↑ 14.35 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA (bbch)
|
10 ↑↑ 14.17 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA (bbch)
|
10 ↑↑ 14.05 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA (bbch)
|
10 ↑↑ 13.69 | Andrew Ducharme |
1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ (bbch)
|
10 ↑↑ 12.42 | Andrew Ducharme |
1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ (bbch)
|
10 ↑↑ 11.70 | Andrew Ducharme |
All decimal places are truncated.
Phase 1
The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
(done to reduce column size: = % Reduced, = Runtime (hours), = Decided, = Processed)
| Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
|---|---|---|---|---|---|---|---|---|
| Terry Ligocki | 2,278,655,696 | 2,109,114,609 | 7.44% | 40.9 | 1,150.90 | 15,468.23 | Reverse_Engineer_Filter.py | Google Drive |
| Terry Ligocki | 2,109,114,609 | 683,067,538 | 67.61% | 452.8 | 874.77 | 1,293.79 | CPS_Filter.py --block-size=1 | |
| Terry Ligocki | 683,067,538 | 210,993,434 | 69.11% | 396.4 | 330.85 | 478.72 | CPS_Filter.py --block-size=2 | |
| Terry Ligocki | 210,993,434 | 141,680,232 | 32.85% | 273.9 | 70.29 | 213.97 | CPS_Filter.py --block-size=3 --max_steps=10_000 | |
| Terry Ligocki | 141,680,232 | 66,029,536 | 53.40% | 486.6 | 43.18 | 80.87 | Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000 | |
| Terry Ligocki | 66,029,536 | 46,119,004 | 30.15% | 167.4 | 33.05 | 109.59 | Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
| Terry Ligocki | 46,119,004 | 39,034,142 | 15.36% | 170.1 | 11.57 | 75.34 | CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000 | |
| Terry Ligocki | 39,034,142 | 29,109,512 | 25.43% | 2,221.6 | 1.24 | 4.88 | CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000 | |
| Terry Ligocki | 29,109,512 | 24,536,819 | 15.71% | 384.2 | 3.31 | 21.05 | Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
| Terry Ligocki | 24,536,819 | 22,302,296 | 9.11% | 1,047.5 | 0.59 | 6.51 | Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
Phase 2
When Phase 1 was completed, a set of deciders/parameters were run to reduce the number of holdout TMs. The details are given in the various Stages below.
Stage 1
Andrew Ducharme ran another pass of "lr_enum_continue" with the maximum number of steps set to 10 million. The holdouts were reduced from ~22.3M TMs to ~20.4M TMs (a 8.72% reduction). The entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with specific C++ code, lr_enum_continue, and a specific parallel queuing system, Slurm:
(done to reduce column size: = % Reduced, = Runtime (hours), = Decided, = Processed)
| Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
|---|---|---|---|---|---|---|---|---|
| Andrew Ducharme | 22,302,296 | 20,358,011 | 8.72% | 1,350.0 | 0.40 | 4.59 | lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false | Google Drive |
Stage 2
Starting from the results of Stage 1, Terry Ligocki ran @mxdys' C++ code, "main.exe", using a variety of its deciders with various parameters. A total of 50 variations were run. The holdouts were reduced from ~20.4M TMs to ~907K TMs (a 95.5% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
(done to reduce column size: = % Reduced, = Compute Time (core-hours), = Decided, = Processed)
| Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
|---|---|---|---|---|---|---|---|---|
| Input | Output | |||||||
| Terry Ligocki | 20,358,011 | 19,500,847 | 4.21% | 22.0 | 10.84 | 257.42 | MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run | Google Drive |
| Terry Ligocki | 19,500,847 | 18,747,861 | 3.86% | 86.0 | 2.43 | 63.01 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run | |
| Terry Ligocki | 18,747,861 | 4,811,076 | 74.34% | 47.0 | 82.33 | 110.75 | chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run | |
| Terry Ligocki | 4,811,076 | 2,982,075 | 38.02% | 17.1 | 29.74 | 78.22 | chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run | |
| Terry Ligocki | 2,982,075 | 2,897,340 | 2.84% | 15.2 | 1.55 | 54.64 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run | |
| Terry Ligocki | 2,897,340 | 2,850,781 | 1.61% | 16.7 | 0.77 | 48.17 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run | |
| Terry Ligocki | 2,850,781 | 2,759,635 | 3.20% | 13.7 | 1.85 | 58.01 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run | |
| Terry Ligocki | 2,759,635 | 1,953,426 | 29.21% | 13.6 | 16.48 | 56.42 | chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run | |
| Terry Ligocki | 1,953,426 | 1,855,545 | 5.01% | 2.4 | 11.18 | 223.14 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run | |
| Terry Ligocki | 1,855,545 | 1,647,269 | 11.22% | 6.6 | 8.80 | 78.40 | MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run | |
| Terry Ligocki | 1,647,269 | 1,608,166 | 2.37% | 3.4 | 3.20 | 134.96 | chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |
| Terry Ligocki | 1,608,166 | 1,585,745 | 1.39% | 9.6 | 0.65 | 46.35 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run | |
| Terry Ligocki | 1,585,745 | 1,555,673 | 1.90% | 5.7 | 1.47 | 77.73 | chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run | |
| Terry Ligocki | 1,555,673 | 1,428,534 | 8.17% | 9.3 | 3.78 | 46.31 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run | |
| Terry Ligocki | 1,428,534 | 1,340,964 | 6.13% | 0.8 | 29.70 | 484.55 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 10000 NG_n 1 run | |
| Terry Ligocki | 1,340,964 | 1,286,439 | 4.07% | 0.8 | 18.40 | 452.56 | chr_LRUH 2 chr_H 2 MitM_CTL NG maxT 3000 NG_n 1 run | |
| Terry Ligocki | 1,286,439 | 1,273,911 | 0.97% | 0.8 | 4.20 | 430.88 | chr_LRUH 4 chr_H 0 MitM_CTL NG maxT 30000 NG_n 1 run | |
| Terry Ligocki | 1,273,911 | 1,265,198 | 0.68% | 0.8 | 2.88 | 420.73 | chr_LRUH 3 chr_H 1 MitM_CTL NG maxT 3000 NG_n 2 run | |
| Terry Ligocki | 1,265,198 | 1,258,925 | 0.50% | 0.9 | 1.99 | 400.83 | chr_LRUH 8 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |
| Terry Ligocki | 1,258,925 | 1,242,136 | 1.33% | 0.8 | 5.51 | 412.84 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 1 tH 0 n 1 run | |
| Terry Ligocki | 1,242,136 | 1,231,731 | 0.84% | 1.0 | 2.78 | 331.77 | MitM_CTL RWL_mod sim 1001 maxT 3000 H 2 mod 2 n 2 run | |
| Terry Ligocki | 1,231,731 | 1,216,646 | 1.22% | 1.0 | 4.15 | 338.72 | MitM_CTL CPS_LRU sim 1001 maxT 3000 LRUH 12 H 0 tH 2 n 2 run | |
| Terry Ligocki | 1,216,646 | 1,214,294 | 0.19% | 0.9 | 0.76 | 393.03 | MitM_CTL RWL_mod sim 1001 maxT 30000 H 2 mod 3 n 1 run | |
| Terry Ligocki | 1,214,294 | 1,213,431 | 0.07% | 0.9 | 0.28 | 391.30 | chr_LRUH 4 chr_H 2 MitM_CTL NG maxT 30000 NG_n 2 run | |
| Terry Ligocki | 1,213,431 | 1,211,390 | 0.17% | 1.1 | 0.52 | 307.13 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 8 H 1 tH 1 n 1 run | |
| Terry Ligocki | 1,211,390 | 1,209,989 | 0.12% | 1.1 | 0.35 | 306.09 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 100000 NG_n 4 run | |
| Terry Ligocki | 1,209,989 | 1,209,974 | 0.00% | 0.9 | 0.00 | 381.42 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 16 H 1 tH 0 n 1 run | |
| Terry Ligocki | 1,209,974 | 1,201,890 | 0.67% | 2.5 | 0.90 | 134.19 | chr_LRUH 16 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |
| Terry Ligocki | 1,201,890 | 1,200,086 | 0.15% | 1.3 | 0.37 | 248.36 | chr_LRUH 10 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |
| Terry Ligocki | 1,200,086 | 1,199,734 | 0.03% | 1.2 | 0.08 | 270.32 | chr_asth 0 chr_LRUH 3 chr_H 3 MitM_CTL NG maxT 100000 NG_n 3 run | |
| Terry Ligocki | 1,199,734 | 1,198,893 | 0.07% | 2.3 | 0.10 | 147.66 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 2 mod 6 n 2 run | |
| Terry Ligocki | 1,198,893 | 1,165,493 | 2.79% | 4.5 | 2.05 | 73.44 | MitM_CTL RWL_mod sim 1001 maxT 30000 H 4 mod 4 n 1 run | |
| Terry Ligocki | 1,165,493 | 1,153,863 | 1.00% | 9.3 | 0.35 | 34.88 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 0 tH 1 n 4 run | |
| Terry Ligocki | 1,153,863 | 1,144,711 | 0.79% | 3.7 | 0.69 | 87.51 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 5 n 2 run | |
| Terry Ligocki | 1,144,711 | 1,127,789 | 1.48% | 7.9 | 0.60 | 40.26 | chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 30000 NG_n 3 run | |
| Terry Ligocki | 1,127,789 | 1,124,762 | 0.27% | 4.7 | 0.18 | 66.75 | MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 3 H 0 tH 1 n 8 run | |
| Terry Ligocki | 1,124,762 | 1,117,226 | 0.67% | 5.6 | 0.37 | 55.36 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 12 H 0 tH 1 n 2 run | |
| Terry Ligocki | 1,117,226 | 1,109,057 | 0.73% | 7.7 | 0.30 | 40.49 | chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 100000 NG_n 3 run | |
| Terry Ligocki | 1,109,057 | 1,083,097 | 2.34% | 11.4 | 0.63 | 27.06 | chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 30000 NG_n 5 run | |
| Terry Ligocki | 1,083,097 | 1,077,833 | 0.49% | 11.2 | 0.13 | 26.81 | chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 100000 NG_n 4 run | |
| Terry Ligocki | 1,077,833 | 1,066,795 | 1.02% | 24.1 | 0.13 | 12.40 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 2 tH 1 n 2 run | |
| Terry Ligocki | 1,066,795 | 1,039,229 | 2.58% | 52.6 | 0.15 | 5.64 | chr_LRUH 14 chr_H 6 MitM_CTL NG maxT 100000 NG_n 11 run | |
| Terry Ligocki | 1,039,229 | 1,019,286 | 1.92% | 43.5 | 0.13 | 6.63 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 3 run | |
| Terry Ligocki | 1,019,286 | 993,556 | 2.52% | 66.8 | 0.11 | 4.24 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 8 H 2 tH 1 n 6 run | |
| Terry Ligocki | 993,556 | 985,718 | 0.79% | 78.3 | 0.03 | 3.53 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 1 n 8 run | |
| Terry Ligocki | 985,718 | 981,095 | 0.47% | 83.7 | 0.02 | 3.27 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 0 n 9 run | |
| Terry Ligocki | 981,095 | 975,912 | 0.53% | 79.4 | 0.02 | 3.43 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 1 n 8 run | |
| Terry Ligocki | 975,912 | 974,180 | 0.18% | 84.6 | 0.01 | 3.20 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 4 n 8 run | |
| Terry Ligocki | 974,180 | 971,254 | 0.30% | 96.9 | 0.01 | 2.79 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 12 run | |
| Terry Ligocki | 971,254 | 970,101 | 0.12% | 105.6 | 0.00 | 2.56 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 12 H 0 tH 0 n 18 run | |
Stage 3
Starting from the results of Stage 2, Andrew Ducharme ran "lr_enum_continue" with the maximum number of steps set to 100 million, then "Enumerate.py" with various parameters. A total of 8 Enumerate variations were run. The holdouts were reduced from ~970K TMs to ~870K TMs (a 10.31% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
(done to reduce column size: = % Reduced, = Compute Time (core-hours), = Decided, = Processed)
| Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
|---|---|---|---|---|---|---|---|---|
| Input | Output | |||||||
| Andrew Ducharme | 970,101 | 939,447 | 3.16% | -- | -- | -- | lr_enum_continue 100_000_000 steps | Google Drive |
| Andrew Ducharme | 939,447 | 903,224 | 3.86% | 440.3 | 0.03 | 0.59 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=4 --no-ctl --lin-steps=0 --time=2 --force --save-freq=1000 | |
| Andrew Ducharme | 903,224 | 895,813 | 0.82% | 647.7 | 0.00 | 0.39 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=3 --no-ctl --lin-steps=0 --time=3 --force --save-freq=1000 | |
| Andrew Ducharme | 895,813 | 889,838 | 0.67% | 609.3 | 0.00 | 0.41 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=8 --no-ctl --lin-steps=0 --time=4 --force --save-freq=1000 | |
| Andrew Ducharme | 889,838 | 880,278 | 1.07% | 1,638.9 | 0.00 | 0.15 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=12 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
| Andrew Ducharme | 880,278 | 877,485 | 0.32% | 1,885.5 | 0.00 | 0.13 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=6 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
| Andrew Ducharme | 877,485 | 875,062 | 0.28% | 2,068.8 | 0.00 | 0.12 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=5 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
| Andrew Ducharme | 875,062 | 873,469 | 0.18% | 1,785.4 | 0.00 | 0.14 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=7 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
| Andrew Ducharme | 873,469 | 870,085 | 0.39% | 9,270.0 | 0.00 | 0.03 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=2 --tape-limit=500 --time=120 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
| Andrew Ducharme | 870,085 | 869,001 | 0.12% | 4,498.3 | 0.00 | 0.05 | Enumerate.py --no-steps --exp-linear-rules --max_loops=10_000_000 --block-mult=60 --tape-limit=5000 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
| Andrew Ducharme | 869,001 | 867,008 | 0.23% | 3997.4 | 0.00 | 0.06 | Enumerate.py -r --no-steps --exp-linear-rules --max-loops=100_000_000 --block-mult=9 --tape-limit=5000 --max-steps-per-macro=100_000 --lin-steps=0 --no-ctl --force --save-freq=250 | |
The total time spent on the lr_enum_continue computation was not recorded.
Stage 4
Following the release of @mxdys's implementation of FAR deciders in C++, these deciders were applied to the 2x6 holdouts by Andrew Ducharme. The details are given in this table. including links to the Google Drive with the holdouts and solved TMs per decider:
(done to reduce column size: = % Reduced, = Compute Time (core-hours), = Decided, = Processed)
| Holdout TMs | TMs/sec/core | Description | Data | ||||
|---|---|---|---|---|---|---|---|
| Input | Output | ||||||
| 867008 | 811301 | 6.43% | 0.043 | 364.10 | 5666.72 | FAR CPS_LRU maxT 100000 LRUH 2 H 1 tH 1 n 2 | Google Drive |
| 811301 | 806119 | 0.64% | 0.159 | 9.03 | 1413.42 | FAR CPS_LRU maxT 100000 LRUH 3 H 1 tH 1 n 2 | |
| 806119 | 736690 | 8.61% | 0.548 | 35.21 | 408.78 | FAR CPS_LRU maxT 100000 LRUH 4 H 1 tH 1 n 2 | |
| 736690 | 736504 | 0.03% | 0.009 | 5.81 | 23021.56 | FAR CPS_LRU maxT 100000 LRUH 1 H 1 tH 1 n 1 | |
| 736504 | 735317 | 0.16% | 0.058 | 5.71 | 3540.88 | FAR CPS_LRU maxT 100000 LRUH 2 H 0 tH 0 n 2 | |
| 735317 | 733717 | 0.22% | 0.341 | 1.30 | 599.28 | FAR CPS_LRU maxT 100000 LRUH 4 H 2 tH 2 n 2 | |
| 733717 | 673920 | 8.15% | 3.8 | 4.43 | 54.32 | FAR CPS_LRU maxT 100000 LRUH 4 H 2 tH 2 n 4 | |
| 673920 | 652828 | 3.13% | ~10 | --- | --- | FAR CPS_LRU maxT 100000 LRUH 6 H 2 tH 2 n 4 | |
| 652828 | 645264 | 1.16% | ~12 | --- | --- | FAR CPS_LRU maxT 100000 LRUH 8 H 2 tH 2 n 4 | |
| 645264 | 641388 | 0.60% | ~15 | --- | --- | FAR CPS_LRU maxT 100000 LRUH 10 H 2 tH 2 n 10 | |
| 641388 | 635505 | 0.92% | ~200 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 10 H 1 tH 2 n 10 | |
| 635505 | 616639 | 2.97% | --- | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 2 H 0 tH 0 n [3-10] | |
| 616639 | 592039 | 3.99% | ~700 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 3 H 0 tH 0 n [1-10] | |
| 592039 | 576938 | 2.55% | ~800 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 3 H [0-1] tH [0-1] n [1-10] | |
| 576938 | 572963 | 0.69% | ~1000 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 4 H 0 tH 0 n [1-10] | |
| 572963 | 567971 | 0.87% | ~1000 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 4 H 2 tH 0 n [1-10] | |
| 567971 | 566096 | 0.33% | ~1000 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 6 H 0 tH 0 n [1-10] | |
| 566096 | 564290 | 0.32% | ~1000 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 8 H 0 tH [0,2] n [1-10] | |
| 564290 | 559553 | 0.84% | ~1000 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 8 H 2 tH 1 n [1-10] | |
| 559553 | 558039 | 0.27% | ~900 | --- | --- | FAR CPS_LRU maxT 1000000 LRUH 8 H 2 tH 2 n [1-10] | |
References
- ↑ Shawn Ligocki. 2022. "Extending Up-arrow Notation"