BB(2,6): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Tjligocki (talk | contribs)
m Changed "center" to "left" alignment for names in second table. Removed commented out table (before, I had saved it this way).
Polygon (talk | contribs)
Added category:BB(2,6)
 
(16 intermediate revisions by 4 users not shown)
Line 4: Line 4:


== Top Halters ==
== Top Halters ==
The highest known scoring machines are:
The scores are given using [[wikipedia:Knuth's_up-arrow_notation|Knuth's up-arrow notation]] with an extension to decimal tetration<ref>Shawn Ligocki. 2022. [https://www.sligocki.com/2022/06/25/ext-up-notation.html "Extending Up-arrow Notation"]</ref>. The 20 highest known scoring machines are:
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 14: Line 14:
|10 ↑↑↑ 3
|10 ↑↑↑ 3
|Pavel Kropitz
|Pavel Kropitz
|-
|{{TM|1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB|halt}}
|10 ↑↑ 19892.08
|Peacemaker II
|-
|-
|{{TM|1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ|halt}}
|{{TM|1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ|halt}}
Line 50: Line 54:
|10 ↑↑ 17.53
|10 ↑↑ 17.53
|Shawn Ligocki
|Shawn Ligocki
|-
|{{TM|1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ|halt}}
|10 ↑↑ 17.53
|Andrew Ducharme
|-
|{{TM|1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA|halt}}
|10 ↑↑ 17.08
|Andrew Ducharme
|-
|{{TM|1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA|halt}}
|10 ↑↑ 15.44
|Andrew Ducharme
|-
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA|halt}}
|10 ↑↑ 14.35
|Andrew Ducharme
|-
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA|halt}}
|10 ↑↑ 14.17
|Andrew Ducharme
|-
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA|halt}}
|10 ↑↑ 14.05
|Andrew Ducharme
|-
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA|halt}}
|10 ↑↑ 13.69
|Andrew Ducharme
|-
|{{TM|1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ|halt}}
|10 ↑↑ 12.42
|Andrew Ducharme
|-
|{{TM|1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ|halt}}
|10 ↑↑ 11.70
|Andrew Ducharme
|}
|}
All decimal places are truncated.
All decimal places are truncated.


== Filtering ==
== Phase 1 ==
Starting from Terry Ligocki's [[holdouts list]] of 22,302,296 TMs, additional filtering has been performed:
The initial phase of enumeration and reduction of [[holdouts]] took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
 
(done to reduce column size:
<math>*^1</math>= % Reduced,
<math>*^2</math>= Runtime (hours),
<math>*^3</math>= Decided,
<math>*^4</math>= Processed)
 
{| class="wikitable sortable" style="text-align: right"
!rowspan="2" |Done by
!colspan="2" |Holdout TMs
!rowspan="2" |<math>*^1</math>
!rowspan="2" |<math>*^2</math>
!colspan="2" |TMs/sec/core
!rowspan="2" |Description
!rowspan="2" |Data
|-
|style="text-align:left" |Terry Ligocki
|2,278,655,696
|2,109,114,609
|7.44%
|40.9
|1,150.90
|15,468.23
|style="text-align:left" |Reverse_Engineer_Filter.py
|style="text-align:left", rowspan="100" |[https://drive.google.com/drive/folders/1p9b5g-Id3WEMUYIwEnaKWRBGIW66ADjM?usp=drive_link Google Drive]
|-
|style="text-align:left" |Terry Ligocki
|2,109,114,609
|683,067,538
|67.61%
|452.8
|874.77
|1,293.79
|style="text-align:left" |CPS_Filter.py --block-size=1
|-
|style="text-align:left" |Terry Ligocki
|683,067,538
|210,993,434
|69.11%
|396.4
|330.85
|478.72
|style="text-align:left" |CPS_Filter.py --block-size=2
|-
|style="text-align:left" |Terry Ligocki
|210,993,434
|141,680,232
|32.85%
|273.9
|70.29
|213.97
|style="text-align:left" |CPS_Filter.py --block-size=3 --max_steps=10_000
|-
|style="text-align:left" |Terry Ligocki
|141,680,232
|66,029,536
|53.40%
|486.6
|43.18
|80.87
|style="text-align:left" |Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000
|-
|style="text-align:left" |Terry Ligocki
|66,029,536
|46,119,004
|30.15%
|167.4
|33.05
|109.59
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000
|-
|style="text-align:left" |Terry Ligocki
|46,119,004
|39,034,142
|15.36%
|170.1
|11.57
|75.34
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000
|-
|style="text-align:left" |Terry Ligocki
|39,034,142
|29,109,512
|25.43%
|2,221.6
|1.24
|4.88
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000
|-
|style="text-align:left" |Terry Ligocki
|29,109,512
|24,536,819
|15.71%
|384.2
|3.31
|21.05
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000
|-
|style="text-align:left" |Terry Ligocki
|24,536,819
|22,302,296
|9.11%
|1,047.5
|0.59
|6.51
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000
|}
 
== Phase 2 ==
When Phase 1 was completed, a set of deciders/parameters were run to reduce the number of holdout TMs. The details are given in the various Stages below.
 
=== Stage 1 ===
Andrew Ducharme ran another pass of "lr_enum_continue" with the maximum number of steps set to 10 million. The holdouts were reduced from ~22.3M TMs to ~20.4M TMs (a 8.72% reduction). The entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with specific C++ code, lr_enum_continue, and a specific parallel queuing system, Slurm:
 
(done to reduce column size:
<math>*^1</math>= % Reduced,
<math>*^2</math>= Runtime (hours),
<math>*^3</math>= Decided,
<math>*^4</math>= Processed)
 
{| class="wikitable sortable" style="text-align: right"
!rowspan="2" |Done by
!colspan="2" |Holdout TMs
!rowspan="2" |<math>*^1</math>
!rowspan="2" |<math>*^2</math>
!colspan="2" |TMs/sec/core
!rowspan="2" |Description
!rowspan="2" |Data
|-
|style="text-align:left" |Andrew Ducharme
|22,302,296
|20,358,011
|8.72%
|1,350.0
|0.40
|4.59
|style="text-align:left" |lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false
|style="text-align:left" rowspan="50"|[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive]
|}
 
=== Stage 2 ===
Starting from the results of Stage 1, Terry Ligocki ran @mxdys' C++ code, "main.exe", using a variety of its deciders with various parameters. A total of 50 variations were run. The holdouts were reduced from ~20.4M TMs to ~907K TMs (a 95.5% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:


(done to reduce column size:
(done to reduce column size:
Line 77: Line 259:
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|22,302,296
|20,358,011
|20,246,662
|19,500,847
|9.2%
|4.21%
|23.0
|22.0
|24.80
|10.84
|269.09
|257.42
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run
|rowspan="100" |[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=share_link Google Drive]
|style="text-align:left" rowspan="50"|[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive]
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|20,246,662
|19,500,847
|19,134,631
|18,747,861
|5.5%
|3.86%
|83.4
|86.0
|3.71
|2.43
|67.46
|63.01
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|19,134,631
|18,747,861
|5,443,318
|4,811,076
|71.6%
|74.34%
|46.6
|47.0
|81.69
|82.33
|114.17
|110.75
|style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run
|style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|5,443,318
|4,811,076
|3,400,118
|2,982,075
|37.5%
|38.02%
|16.3
|17.1
|34.87
|29.74
|92.90
|78.22
|style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run
|style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|3,400,118
|2,982,075
|3,303,416
|2,897,340
|2.8%
|2.84%
|14.1
|15.2
|1.90
|1.55
|66.82
|54.64
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|3,303,416
|2,897,340
|3,249,427
|2,850,781
|1.6%
|1.61%
|16.5
|16.7
|0.91
|0.77
|55.59
|48.17
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|3,249,427
|2,850,781
|3,155,741
|2,759,635
|2.9%
|3.20%
|13.4
|13.7
|1.94
|1.85
|67.25
|58.01
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|3,155,741
|2,759,635
|2,246,891
|1,953,426
|28.8%
|29.21%
|14.1
|13.6
|17.93
|16.48
|62.24
|56.42
|style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run
|style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|2,246,891
|1,953,426
|2,143,803
|1,855,545
|4.6%
|5.01%
|7.5
|2.4
|3.82
|11.18
|83.19
|223.14
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|2,143,803
|1,855,545
|1,938,663
|1,647,269
|9.6%
|11.22%
|7.5
|6.6
|7.58
|8.80
|79.21
|78.40
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|1,938,663
|1,647,269
|1,885,153
|1,608,166
|2.8%
|2.37%
|7.5
|3.4
|1.98
|3.20
|71.72
|134.96
|style="text-align:left" |chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run
|style="text-align:left" |chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|1,885,153
|1,608,166
|1,848,887
|1,585,745
|1.9%
|1.39%
|10.5
|9.6
|0.96
|0.65
|49.68
|46.35
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|1,848,887
|1,585,745
|1,816,027
|1,555,673
|1.8%
|1.90%
|7.6
|5.7
|1.20
|1.47
|67.77
|77.73
|style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run
|style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run
|-
|-
|style="text-align:left" |Terry Ligocki
|style="text-align:left" |Terry Ligocki
|1,816,027
|1,555,673
|1,688,951
|1,428,534
|7.0%
|8.17%
|10.4
|9.3
|3.40
|3.78
|48.66
|46.31
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,428,534
|1,340,964
|6.13%
|0.8
|29.70
|484.55
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 10000 NG_n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,340,964
|1,286,439
|4.07%
|0.8
|18.40
|452.56
|style="text-align:left" |chr_LRUH 2 chr_H 2 MitM_CTL NG maxT 3000 NG_n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,286,439
|1,273,911
|0.97%
|0.8
|4.20
|430.88
|style="text-align:left" |chr_LRUH 4 chr_H 0 MitM_CTL NG maxT 30000 NG_n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,273,911
|1,265,198
|0.68%
|0.8
|2.88
|420.73
|style="text-align:left" |chr_LRUH 3 chr_H 1 MitM_CTL NG maxT 3000 NG_n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,265,198
|1,258,925
|0.50%
|0.9
|1.99
|400.83
|style="text-align:left" |chr_LRUH 8 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,258,925
|1,242,136
|1.33%
|0.8
|5.51
|412.84
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 1 tH 0 n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,242,136
|1,231,731
|0.84%
|1.0
|2.78
|331.77
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 2 mod 2 n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,231,731
|1,216,646
|1.22%
|1.0
|4.15
|338.72
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 3000 LRUH 12 H 0 tH 2 n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,216,646
|1,214,294
|0.19%
|0.9
|0.76
|393.03
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 30000 H 2 mod 3 n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,214,294
|1,213,431
|0.07%
|0.9
|0.28
|391.30
|style="text-align:left" |chr_LRUH 4 chr_H 2 MitM_CTL NG maxT 30000 NG_n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,213,431
|1,211,390
|0.17%
|1.1
|0.52
|307.13
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 8 H 1 tH 1 n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,211,390
|1,209,989
|0.12%
|1.1
|0.35
|306.09
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 100000 NG_n 4 run
|-
|style="text-align:left" |Terry Ligocki
|1,209,989
|1,209,974
|0.00%
|0.9
|0.00
|381.42
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 16 H 1 tH 0 n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,209,974
|1,201,890
|0.67%
|2.5
|0.90
|134.19
|style="text-align:left" |chr_LRUH 16 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,201,890
|1,200,086
|0.15%
|1.3
|0.37
|248.36
|style="text-align:left" |chr_LRUH 10 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,200,086
|1,199,734
|0.03%
|1.2
|0.08
|270.32
|style="text-align:left" |chr_asth 0 chr_LRUH 3 chr_H 3 MitM_CTL NG maxT 100000 NG_n 3 run
|-
|style="text-align:left" |Terry Ligocki
|1,199,734
|1,198,893
|0.07%
|2.3
|0.10
|147.66
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 2 mod 6 n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,198,893
|1,165,493
|2.79%
|4.5
|2.05
|73.44
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 30000 H 4 mod 4 n 1 run
|-
|style="text-align:left" |Terry Ligocki
|1,165,493
|1,153,863
|1.00%
|9.3
|0.35
|34.88
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 0 tH 1 n 4 run
|-
|style="text-align:left" |Terry Ligocki
|1,153,863
|1,144,711
|0.79%
|3.7
|0.69
|87.51
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 5 n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,144,711
|1,127,789
|1.48%
|7.9
|0.60
|40.26
|style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 30000 NG_n 3 run
|-
|style="text-align:left" |Terry Ligocki
|1,127,789
|1,124,762
|0.27%
|4.7
|0.18
|66.75
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 3 H 0 tH 1 n 8 run
|-
|style="text-align:left" |Terry Ligocki
|1,124,762
|1,117,226
|0.67%
|5.6
|0.37
|55.36
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 12 H 0 tH 1 n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,117,226
|1,109,057
|0.73%
|7.7
|0.30
|40.49
|style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 100000 NG_n 3 run
|-
|style="text-align:left" |Terry Ligocki
|1,109,057
|1,083,097
|2.34%
|11.4
|0.63
|27.06
|style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 30000 NG_n 5 run
|-
|style="text-align:left" |Terry Ligocki
|1,083,097
|1,077,833
|0.49%
|11.2
|0.13
|26.81
|style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 100000 NG_n 4 run
|-
|style="text-align:left" |Terry Ligocki
|1,077,833
|1,066,795
|1.02%
|24.1
|0.13
|12.40
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 2 tH 1 n 2 run
|-
|style="text-align:left" |Terry Ligocki
|1,066,795
|1,039,229
|2.58%
|52.6
|0.15
|5.64
|style="text-align:left" |chr_LRUH 14 chr_H 6 MitM_CTL NG maxT 100000 NG_n 11 run
|-
|style="text-align:left" |Terry Ligocki
|1,039,229
|1,019,286
|1.92%
|43.5
|0.13
|6.63
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 3 run
|-
|style="text-align:left" |Terry Ligocki
|1,019,286
|993,556
|2.52%
|66.8
|0.11
|4.24
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 8 H 2 tH 1 n 6 run
|-
|style="text-align:left" |Terry Ligocki
|993,556
|985,718
|0.79%
|78.3
|0.03
|3.53
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 1 n 8 run
|-
|style="text-align:left" |Terry Ligocki
|985,718
|981,095
|0.47%
|83.7
|0.02
|3.27
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 0 n 9 run
|-
|style="text-align:left" |Terry Ligocki
|981,095
|975,912
|0.53%
|79.4
|0.02
|3.43
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 1 n 8 run
|-
|style="text-align:left" |Terry Ligocki
|975,912
|974,180
|0.18%
|84.6
|0.01
|3.20
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 4 n 8 run
|-
|style="text-align:left" |Terry Ligocki
|974,180
|971,254
|0.30%
|96.9
|0.01
|2.79
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 12 run
|-
|style="text-align:left" |Terry Ligocki
|971,254
|970,101
|0.12%
|105.6
|0.00
|2.56
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 12 H 0 tH 0 n 18 run
|}
=== Stage 3 ===
Starting from the results of Stage 2, Andrew Ducharme ran  "lr_enum_continue" with the maximum number of steps set to 100 million, then "Enumerate.py" with various parameters. A total of 6 Enumerate variations were run. The holdouts were reduced from ~970K TMs to ~870K TMs (a 10.31% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
(done to reduce column size:
<math>*^1</math>= % Reduced,
<math>*^2</math>= Compute Time (core-hours),
<math>*^3</math>= Decided,
<math>*^4</math>= Processed)
{| class="wikitable sortable" style="text-align: right"
!rowspan="2" |Done by
!colspan="2" |Holdout TMs
!rowspan="2" |<math>*^1</math>
!rowspan="2" |<math>*^2</math>
!colspan="2" |TMs/sec/core
!rowspan="2" |Description
!rowspan="2" |Data
|-
!Input
!Output
!<math>*^3</math>
!<math>*^4</math>
|-
|style="text-align:left" |Andrew Ducharme
|970,101
|939,447
|3.16%
| --
| --
| --
|style="text-align:left" |lr_enum_continue 100_000_000 steps
| rowspan="7" |[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive]
|-
| style="text-align:left" |Andrew Ducharme
|895,813
|889,838
|0.67%
|609.3
|0.00
|0.41
| style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=8 --no-ctl --lin-steps=0 --time=4  --force --save-freq=1000
|-
|style="text-align:left" |Andrew Ducharme
|889,838
|880,278
|1.07%
|1,638.9
|0.00
|0.15
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=12 --no-ctl --lin-steps=0  --force --save-freq=1000
|-
|style="text-align:left" |Andrew Ducharme
|880,278
|877,485
|0.32%
|1,885.5
|0.00
|0.13
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=6 --no-ctl --lin-steps=0  --force --save-freq=1000
|-
|style="text-align:left" |Andrew Ducharme
|877,485
|875,062
|0.28%
|2,068.8
|0.00
|0.12
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=5 --no-ctl --lin-steps=0  --force --save-freq=1000
|-
|style="text-align:left" |Andrew Ducharme
|875,062
|873,469
|0.18%
|1,785.4
|0.00
|0.14
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=7 --no-ctl --lin-steps=0  --force --save-freq=1000
|-
|style="text-align:left" |Andrew Ducharme
|873,469
|870,085
|0.39%
|9,270.0
|0.00
|0.03
|style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=2 --tape-limit=500 --time=120 --no-ctl --lin-steps=0  --force --save-freq=1000
|}
|}
The total time spent on the lr_enum_continue computation was not recorded.


==References==
<!--
<!--
A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute.
A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute.
-->
-->


[[Category: BB Domains]]
[[Category: BB Domains]][[Category:BB(2,6)]]

Latest revision as of 13:39, 19 October 2025

The 2-state, 6-symbol Busy Beaver problem, BB(2,6), is unsolved. With cryptids like Hydra in the preceding domain BB(2,5), we know that we must solve a Collatz-like problem in order to solve BB(2,6).

The current BB(2,6) champion 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch) was discovered by Pavel Kropitz in May 2023, proving the lower bound:S(2,6)>Σ(2,6)>10101010115>103

Top Halters

The scores are given using Knuth's up-arrow notation with an extension to decimal tetration[1]. The 20 highest known scoring machines are:

TM Approximate sigma score Discoverer
1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch) 10 ↑↑↑ 3 Pavel Kropitz
1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB (bbch) 10 ↑↑ 19892.08 Peacemaker II
1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ (bbch) 10 ↑↑ 91.17 Pavel Kropitz
1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA (bbch) 10 ↑↑ 70.27 Shawn Ligocki
1RB2LB1RZ3LA2LA4RB_1LA3RB4RB1LB5LB0RA (bbch) 10 ↑↑ 69.68 Shawn Ligocki
1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ (bbch) 10 ↑↑ 54.90 Andrew Ducharme
1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB (bbch) 10 ↑↑ 42.17 Andrew Ducharme
1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB (bbch) 10 ↑↑ 40.07 Andrew Ducharme
1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ (bbch) 10 ↑↑ 21.54 Shawn Ligocki
1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA (bbch) 10 ↑↑ 20.58 Shawn Ligocki
1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ (bbch) 10 ↑↑ 17.53 Shawn Ligocki
1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ (bbch) 10 ↑↑ 17.53 Andrew Ducharme
1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA (bbch) 10 ↑↑ 17.08 Andrew Ducharme
1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA (bbch) 10 ↑↑ 15.44 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA (bbch) 10 ↑↑ 14.35 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA (bbch) 10 ↑↑ 14.17 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA (bbch) 10 ↑↑ 14.05 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA (bbch) 10 ↑↑ 13.69 Andrew Ducharme
1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ (bbch) 10 ↑↑ 12.42 Andrew Ducharme
1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ (bbch) 10 ↑↑ 11.70 Andrew Ducharme

All decimal places are truncated.

Phase 1

The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:

(done to reduce column size: *1= % Reduced, *2= Runtime (hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Terry Ligocki 2,278,655,696 2,109,114,609 7.44% 40.9 1,150.90 15,468.23 Reverse_Engineer_Filter.py Google Drive
Terry Ligocki 2,109,114,609 683,067,538 67.61% 452.8 874.77 1,293.79 CPS_Filter.py --block-size=1
Terry Ligocki 683,067,538 210,993,434 69.11% 396.4 330.85 478.72 CPS_Filter.py --block-size=2
Terry Ligocki 210,993,434 141,680,232 32.85% 273.9 70.29 213.97 CPS_Filter.py --block-size=3 --max_steps=10_000
Terry Ligocki 141,680,232 66,029,536 53.40% 486.6 43.18 80.87 Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000
Terry Ligocki 66,029,536 46,119,004 30.15% 167.4 33.05 109.59 Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000
Terry Ligocki 46,119,004 39,034,142 15.36% 170.1 11.57 75.34 CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000
Terry Ligocki 39,034,142 29,109,512 25.43% 2,221.6 1.24 4.88 CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000
Terry Ligocki 29,109,512 24,536,819 15.71% 384.2 3.31 21.05 Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000
Terry Ligocki 24,536,819 22,302,296 9.11% 1,047.5 0.59 6.51 Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000

Phase 2

When Phase 1 was completed, a set of deciders/parameters were run to reduce the number of holdout TMs. The details are given in the various Stages below.

Stage 1

Andrew Ducharme ran another pass of "lr_enum_continue" with the maximum number of steps set to 10 million. The holdouts were reduced from ~22.3M TMs to ~20.4M TMs (a 8.72% reduction). The entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with specific C++ code, lr_enum_continue, and a specific parallel queuing system, Slurm:

(done to reduce column size: *1= % Reduced, *2= Runtime (hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Andrew Ducharme 22,302,296 20,358,011 8.72% 1,350.0 0.40 4.59 lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false Google Drive

Stage 2

Starting from the results of Stage 1, Terry Ligocki ran @mxdys' C++ code, "main.exe", using a variety of its deciders with various parameters. A total of 50 variations were run. The holdouts were reduced from ~20.4M TMs to ~907K TMs (a 95.5% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:

(done to reduce column size: *1= % Reduced, *2= Compute Time (core-hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Input Output *3 *4
Terry Ligocki 20,358,011 19,500,847 4.21% 22.0 10.84 257.42 MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run Google Drive
Terry Ligocki 19,500,847 18,747,861 3.86% 86.0 2.43 63.01 MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run
Terry Ligocki 18,747,861 4,811,076 74.34% 47.0 82.33 110.75 chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run
Terry Ligocki 4,811,076 2,982,075 38.02% 17.1 29.74 78.22 chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run
Terry Ligocki 2,982,075 2,897,340 2.84% 15.2 1.55 54.64 MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run
Terry Ligocki 2,897,340 2,850,781 1.61% 16.7 0.77 48.17 chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run
Terry Ligocki 2,850,781 2,759,635 3.20% 13.7 1.85 58.01 MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run
Terry Ligocki 2,759,635 1,953,426 29.21% 13.6 16.48 56.42 chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run
Terry Ligocki 1,953,426 1,855,545 5.01% 2.4 11.18 223.14 MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run
Terry Ligocki 1,855,545 1,647,269 11.22% 6.6 8.80 78.40 MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run
Terry Ligocki 1,647,269 1,608,166 2.37% 3.4 3.20 134.96 chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run
Terry Ligocki 1,608,166 1,585,745 1.39% 9.6 0.65 46.35 MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run
Terry Ligocki 1,585,745 1,555,673 1.90% 5.7 1.47 77.73 chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run
Terry Ligocki 1,555,673 1,428,534 8.17% 9.3 3.78 46.31 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run
Terry Ligocki 1,428,534 1,340,964 6.13% 0.8 29.70 484.55 chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 10000 NG_n 1 run
Terry Ligocki 1,340,964 1,286,439 4.07% 0.8 18.40 452.56 chr_LRUH 2 chr_H 2 MitM_CTL NG maxT 3000 NG_n 1 run
Terry Ligocki 1,286,439 1,273,911 0.97% 0.8 4.20 430.88 chr_LRUH 4 chr_H 0 MitM_CTL NG maxT 30000 NG_n 1 run
Terry Ligocki 1,273,911 1,265,198 0.68% 0.8 2.88 420.73 chr_LRUH 3 chr_H 1 MitM_CTL NG maxT 3000 NG_n 2 run
Terry Ligocki 1,265,198 1,258,925 0.50% 0.9 1.99 400.83 chr_LRUH 8 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run
Terry Ligocki 1,258,925 1,242,136 1.33% 0.8 5.51 412.84 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 1 tH 0 n 1 run
Terry Ligocki 1,242,136 1,231,731 0.84% 1.0 2.78 331.77 MitM_CTL RWL_mod sim 1001 maxT 3000 H 2 mod 2 n 2 run
Terry Ligocki 1,231,731 1,216,646 1.22% 1.0 4.15 338.72 MitM_CTL CPS_LRU sim 1001 maxT 3000 LRUH 12 H 0 tH 2 n 2 run
Terry Ligocki 1,216,646 1,214,294 0.19% 0.9 0.76 393.03 MitM_CTL RWL_mod sim 1001 maxT 30000 H 2 mod 3 n 1 run
Terry Ligocki 1,214,294 1,213,431 0.07% 0.9 0.28 391.30 chr_LRUH 4 chr_H 2 MitM_CTL NG maxT 30000 NG_n 2 run
Terry Ligocki 1,213,431 1,211,390 0.17% 1.1 0.52 307.13 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 8 H 1 tH 1 n 1 run
Terry Ligocki 1,211,390 1,209,989 0.12% 1.1 0.35 306.09 chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 100000 NG_n 4 run
Terry Ligocki 1,209,989 1,209,974 0.00% 0.9 0.00 381.42 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 16 H 1 tH 0 n 1 run
Terry Ligocki 1,209,974 1,201,890 0.67% 2.5 0.90 134.19 chr_LRUH 16 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run
Terry Ligocki 1,201,890 1,200,086 0.15% 1.3 0.37 248.36 chr_LRUH 10 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run
Terry Ligocki 1,200,086 1,199,734 0.03% 1.2 0.08 270.32 chr_asth 0 chr_LRUH 3 chr_H 3 MitM_CTL NG maxT 100000 NG_n 3 run
Terry Ligocki 1,199,734 1,198,893 0.07% 2.3 0.10 147.66 MitM_CTL RWL_mod sim 1001 maxT 10000 H 2 mod 6 n 2 run
Terry Ligocki 1,198,893 1,165,493 2.79% 4.5 2.05 73.44 MitM_CTL RWL_mod sim 1001 maxT 30000 H 4 mod 4 n 1 run
Terry Ligocki 1,165,493 1,153,863 1.00% 9.3 0.35 34.88 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 0 tH 1 n 4 run
Terry Ligocki 1,153,863 1,144,711 0.79% 3.7 0.69 87.51 MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 5 n 2 run
Terry Ligocki 1,144,711 1,127,789 1.48% 7.9 0.60 40.26 chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 30000 NG_n 3 run
Terry Ligocki 1,127,789 1,124,762 0.27% 4.7 0.18 66.75 MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 3 H 0 tH 1 n 8 run
Terry Ligocki 1,124,762 1,117,226 0.67% 5.6 0.37 55.36 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 12 H 0 tH 1 n 2 run
Terry Ligocki 1,117,226 1,109,057 0.73% 7.7 0.30 40.49 chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 100000 NG_n 3 run
Terry Ligocki 1,109,057 1,083,097 2.34% 11.4 0.63 27.06 chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 30000 NG_n 5 run
Terry Ligocki 1,083,097 1,077,833 0.49% 11.2 0.13 26.81 chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 100000 NG_n 4 run
Terry Ligocki 1,077,833 1,066,795 1.02% 24.1 0.13 12.40 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 2 tH 1 n 2 run
Terry Ligocki 1,066,795 1,039,229 2.58% 52.6 0.15 5.64 chr_LRUH 14 chr_H 6 MitM_CTL NG maxT 100000 NG_n 11 run
Terry Ligocki 1,039,229 1,019,286 1.92% 43.5 0.13 6.63 MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 3 run
Terry Ligocki 1,019,286 993,556 2.52% 66.8 0.11 4.24 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 8 H 2 tH 1 n 6 run
Terry Ligocki 993,556 985,718 0.79% 78.3 0.03 3.53 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 1 n 8 run
Terry Ligocki 985,718 981,095 0.47% 83.7 0.02 3.27 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 0 n 9 run
Terry Ligocki 981,095 975,912 0.53% 79.4 0.02 3.43 MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 1 n 8 run
Terry Ligocki 975,912 974,180 0.18% 84.6 0.01 3.20 MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 4 n 8 run
Terry Ligocki 974,180 971,254 0.30% 96.9 0.01 2.79 MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 12 run
Terry Ligocki 971,254 970,101 0.12% 105.6 0.00 2.56 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 12 H 0 tH 0 n 18 run

Stage 3

Starting from the results of Stage 2, Andrew Ducharme ran "lr_enum_continue" with the maximum number of steps set to 100 million, then "Enumerate.py" with various parameters. A total of 6 Enumerate variations were run. The holdouts were reduced from ~970K TMs to ~870K TMs (a 10.31% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:

(done to reduce column size: *1= % Reduced, *2= Compute Time (core-hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Input Output *3 *4
Andrew Ducharme 970,101 939,447 3.16% -- -- -- lr_enum_continue 100_000_000 steps Google Drive
Andrew Ducharme 895,813 889,838 0.67% 609.3 0.00 0.41 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=8 --no-ctl --lin-steps=0 --time=4 --force --save-freq=1000
Andrew Ducharme 889,838 880,278 1.07% 1,638.9 0.00 0.15 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=12 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 880,278 877,485 0.32% 1,885.5 0.00 0.13 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=6 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 877,485 875,062 0.28% 2,068.8 0.00 0.12 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=5 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 875,062 873,469 0.18% 1,785.4 0.00 0.14 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=7 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 873,469 870,085 0.39% 9,270.0 0.00 0.03 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=2 --tape-limit=500 --time=120 --no-ctl --lin-steps=0 --force --save-freq=1000

The total time spent on the lr_enum_continue computation was not recorded.

References

  1. Shawn Ligocki. 2022. "Extending Up-arrow Notation"