BB(2,6): Difference between revisions
Updated the "Filtering" table have the same format as "BB(7)" in preparation of adding new results. |
Added category:BB(2,6) |
||
(27 intermediate revisions by 4 users not shown) | |||
Line 4: | Line 4: | ||
== Top Halters == | == Top Halters == | ||
The highest known scoring machines are: | The scores are given using [[wikipedia:Knuth's_up-arrow_notation|Knuth's up-arrow notation]] with an extension to decimal tetration<ref>Shawn Ligocki. 2022. [https://www.sligocki.com/2022/06/25/ext-up-notation.html "Extending Up-arrow Notation"]</ref>. The 20 highest known scoring machines are: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
Line 14: | Line 14: | ||
|10 ↑↑↑ 3 | |10 ↑↑↑ 3 | ||
|Pavel Kropitz | |Pavel Kropitz | ||
|- | |||
|{{TM|1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB|halt}} | |||
|10 ↑↑ 19892.08 | |||
|Peacemaker II | |||
|- | |- | ||
|{{TM|1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ|halt}} | |{{TM|1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ|halt}} | ||
|10 ↑↑ 91 | |10 ↑↑ 91.17 | ||
|Pavel Kropitz | |Pavel Kropitz | ||
|- | |- | ||
|{{TM|1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA|halt}} | |{{TM|1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA|halt}} | ||
|10 ↑↑ 70 | |10 ↑↑ 70.27 | ||
|Shawn Ligocki | |||
|- | |||
|{{TM|1RB2LB1RZ3LA2LA4RB_1LA3RB4RB1LB5LB0RA|halt}} | |||
|10 ↑↑ 69.68 | |||
|Shawn Ligocki | |Shawn Ligocki | ||
|- | |- | ||
|{{TM|1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ|halt}} | |{{TM|1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ|halt}} | ||
|10 ↑↑ 54.90 | |10 ↑↑ 54.90 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB|halt}} | |{{TM|1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB|halt}} | ||
|10 ↑↑ 42.17 | |10 ↑↑ 42.17 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB|halt}} | |{{TM|1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB|halt}} | ||
|10 ↑↑ 40.07 | |10 ↑↑ 40.07 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |- | ||
|{{TM|1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ|halt}} | |{{TM|1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ|halt}} | ||
|10 ↑↑ 21.54 | |10 ↑↑ 21.54 | ||
| | |Shawn Ligocki | ||
|- | |- | ||
|{{TM|1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA|halt}} | |{{TM|1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA|halt}} | ||
Line 45: | Line 53: | ||
|{{TM|1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ|halt}} | |{{TM|1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ|halt}} | ||
|10 ↑↑ 17.53 | |10 ↑↑ 17.53 | ||
| | |Shawn Ligocki | ||
|- | |- | ||
|{{TM|1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ|halt}} | |{{TM|1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ|halt}} | ||
|10 ↑↑ 17.53 | |10 ↑↑ 17.53 | ||
|Andrew Ducharme | |Andrew Ducharme | ||
|- | |||
|{{TM|1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA|halt}} | |||
|10 ↑↑ 17.08 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA|halt}} | |||
|10 ↑↑ 15.44 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA|halt}} | |||
|10 ↑↑ 14.35 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA|halt}} | |||
|10 ↑↑ 14.17 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA|halt}} | |||
|10 ↑↑ 14.05 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA|halt}} | |||
|10 ↑↑ 13.69 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ|halt}} | |||
|10 ↑↑ 12.42 | |||
|Andrew Ducharme | |||
|- | |||
|{{TM|1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ|halt}} | |||
|10 ↑↑ 11.70 | |||
|Andrew Ducharme | |||
|} | |} | ||
All decimal places are truncated | All decimal places are truncated. | ||
== | == Phase 1 == | ||
The initial phase of enumeration and reduction of [[holdouts]] took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Runtime (hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
!rowspan="2" |Done by | |||
!colspan="2" |Holdout TMs | |||
!rowspan="2" |<math>*^1</math> | |||
!rowspan="2" |<math>*^2</math> | |||
!colspan="2" |TMs/sec/core | |||
!rowspan="2" |Description | |||
!rowspan="2" |Data | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|2,278,655,696 | |||
|2,109,114,609 | |||
|7.44% | |||
|40.9 | |||
|1,150.90 | |||
|15,468.23 | |||
|style="text-align:left" |Reverse_Engineer_Filter.py | |||
|style="text-align:left", rowspan="100" |[https://drive.google.com/drive/folders/1p9b5g-Id3WEMUYIwEnaKWRBGIW66ADjM?usp=drive_link Google Drive] | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|2,109,114,609 | |||
|683,067,538 | |||
|67.61% | |||
|452.8 | |||
|874.77 | |||
|1,293.79 | |||
|style="text-align:left" |CPS_Filter.py --block-size=1 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|683,067,538 | |||
|210,993,434 | |||
|69.11% | |||
|396.4 | |||
|330.85 | |||
|478.72 | |||
|style="text-align:left" |CPS_Filter.py --block-size=2 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|210,993,434 | |||
|141,680,232 | |||
|32.85% | |||
|273.9 | |||
|70.29 | |||
|213.97 | |||
|style="text-align:left" |CPS_Filter.py --block-size=3 --max_steps=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|141,680,232 | |||
|66,029,536 | |||
|53.40% | |||
|486.6 | |||
|43.18 | |||
|80.87 | |||
|style="text-align:left" |Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|66,029,536 | |||
|46,119,004 | |||
|30.15% | |||
|167.4 | |||
|33.05 | |||
|109.59 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|46,119,004 | |||
|39,034,142 | |||
|15.36% | |||
|170.1 | |||
|11.57 | |||
|75.34 | |||
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|39,034,142 | |||
|29,109,512 | |||
|25.43% | |||
|2,221.6 | |||
|1.24 | |||
|4.88 | |||
|style="text-align:left" |CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|29,109,512 | |||
|24,536,819 | |||
|15.71% | |||
|384.2 | |||
|3.31 | |||
|21.05 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|24,536,819 | |||
|22,302,296 | |||
|9.11% | |||
|1,047.5 | |||
|0.59 | |||
|6.51 | |||
|style="text-align:left" |Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |||
|} | |||
== Phase 2 == | |||
When Phase 1 was completed, a set of deciders/parameters were run to reduce the number of holdout TMs. The details are given in the various Stages below. | |||
=== Stage 1 === | |||
Andrew Ducharme ran another pass of "lr_enum_continue" with the maximum number of steps set to 10 million. The holdouts were reduced from ~22.3M TMs to ~20.4M TMs (a 8.72% reduction). The entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with specific C++ code, lr_enum_continue, and a specific parallel queuing system, Slurm: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Runtime (hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
!rowspan="2" |Done by | |||
!colspan="2" |Holdout TMs | |||
!rowspan="2" |<math>*^1</math> | |||
!rowspan="2" |<math>*^2</math> | |||
!colspan="2" |TMs/sec/core | |||
!rowspan="2" |Description | |||
!rowspan="2" |Data | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|22,302,296 | |||
|20,358,011 | |||
|8.72% | |||
|1,350.0 | |||
|0.40 | |||
|4.59 | |||
|style="text-align:left" |lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false | |||
|style="text-align:left" rowspan="50"|[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive] | |||
|} | |||
=== Stage 2 === | |||
Starting from the results of Stage 1, Terry Ligocki ran @mxdys' C++ code, "main.exe", using a variety of its deciders with various parameters. A total of 50 variations were run. The holdouts were reduced from ~20.4M TMs to ~907K TMs (a 95.5% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation: | |||
(done to reduce column size: | (done to reduce column size: | ||
Line 76: | Line 258: | ||
!<math>*^4</math> | !<math>*^4</math> | ||
|- | |- | ||
|style="text-align: | |style="text-align:left" |Terry Ligocki | ||
|22, | |20,358,011 | ||
|20, | |19,500,847 | ||
|6.8% | |4.21% | ||
| | |22.0 | ||
| | |10.84 | ||
|22.56 | |257.42 | ||
|style="text-align:left" |Enumerate.py with -- | |style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run | ||
|rowspan="7" |[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp= | |style="text-align:left" rowspan="50"|[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive] | ||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|19,500,847 | |||
|18,747,861 | |||
|3.86% | |||
|86.0 | |||
|2.43 | |||
|63.01 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|18,747,861 | |||
|4,811,076 | |||
|74.34% | |||
|47.0 | |||
|82.33 | |||
|110.75 | |||
|style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|4,811,076 | |||
|2,982,075 | |||
|38.02% | |||
|17.1 | |||
|29.74 | |||
|78.22 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|2,982,075 | |||
|2,897,340 | |||
|2.84% | |||
|15.2 | |||
|1.55 | |||
|54.64 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|2,897,340 | |||
|2,850,781 | |||
|1.61% | |||
|16.7 | |||
|0.77 | |||
|48.17 | |||
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|2,850,781 | |||
|2,759,635 | |||
|3.20% | |||
|13.7 | |||
|1.85 | |||
|58.01 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|2,759,635 | |||
|1,953,426 | |||
|29.21% | |||
|13.6 | |||
|16.48 | |||
|56.42 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,953,426 | |||
|1,855,545 | |||
|5.01% | |||
|2.4 | |||
|11.18 | |||
|223.14 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,855,545 | |||
|1,647,269 | |||
|11.22% | |||
|6.6 | |||
|8.80 | |||
|78.40 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,647,269 | |||
|1,608,166 | |||
|2.37% | |||
|3.4 | |||
|3.20 | |||
|134.96 | |||
|style="text-align:left" |chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,608,166 | |||
|1,585,745 | |||
|1.39% | |||
|9.6 | |||
|0.65 | |||
|46.35 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,585,745 | |||
|1,555,673 | |||
|1.90% | |||
|5.7 | |||
|1.47 | |||
|77.73 | |||
|style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,555,673 | |||
|1,428,534 | |||
|8.17% | |||
|9.3 | |||
|3.78 | |||
|46.31 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,428,534 | |||
|1,340,964 | |||
|6.13% | |||
|0.8 | |||
|29.70 | |||
|484.55 | |||
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 10000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,340,964 | |||
|1,286,439 | |||
|4.07% | |||
|0.8 | |||
|18.40 | |||
|452.56 | |||
|style="text-align:left" |chr_LRUH 2 chr_H 2 MitM_CTL NG maxT 3000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,286,439 | |||
|1,273,911 | |||
|0.97% | |||
|0.8 | |||
|4.20 | |||
|430.88 | |||
|style="text-align:left" |chr_LRUH 4 chr_H 0 MitM_CTL NG maxT 30000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,273,911 | |||
|1,265,198 | |||
|0.68% | |||
|0.8 | |||
|2.88 | |||
|420.73 | |||
|style="text-align:left" |chr_LRUH 3 chr_H 1 MitM_CTL NG maxT 3000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,265,198 | |||
|1,258,925 | |||
|0.50% | |||
|0.9 | |||
|1.99 | |||
|400.83 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,258,925 | |||
|1,242,136 | |||
|1.33% | |||
|0.8 | |||
|5.51 | |||
|412.84 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 1 tH 0 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,242,136 | |||
|1,231,731 | |||
|0.84% | |||
|1.0 | |||
|2.78 | |||
|331.77 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 3000 H 2 mod 2 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,231,731 | |||
|1,216,646 | |||
|1.22% | |||
|1.0 | |||
|4.15 | |||
|338.72 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 3000 LRUH 12 H 0 tH 2 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,216,646 | |||
|1,214,294 | |||
|0.19% | |||
|0.9 | |||
|0.76 | |||
|393.03 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 30000 H 2 mod 3 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,214,294 | |||
|1,213,431 | |||
|0.07% | |||
|0.9 | |||
|0.28 | |||
|391.30 | |||
|style="text-align:left" |chr_LRUH 4 chr_H 2 MitM_CTL NG maxT 30000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,213,431 | |||
|1,211,390 | |||
|0.17% | |||
|1.1 | |||
|0.52 | |||
|307.13 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 8 H 1 tH 1 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,211,390 | |||
|1,209,989 | |||
|0.12% | |||
|1.1 | |||
|0.35 | |||
|306.09 | |||
|style="text-align:left" |chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 100000 NG_n 4 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,209,989 | |||
|1,209,974 | |||
|0.00% | |||
|0.9 | |||
|0.00 | |||
|381.42 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 16 H 1 tH 0 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,209,974 | |||
|1,201,890 | |||
|0.67% | |||
|2.5 | |||
|0.90 | |||
|134.19 | |||
|style="text-align:left" |chr_LRUH 16 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,201,890 | |||
|1,200,086 | |||
|0.15% | |||
|1.3 | |||
|0.37 | |||
|248.36 | |||
|style="text-align:left" |chr_LRUH 10 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,200,086 | |||
|1,199,734 | |||
|0.03% | |||
|1.2 | |||
|0.08 | |||
|270.32 | |||
|style="text-align:left" |chr_asth 0 chr_LRUH 3 chr_H 3 MitM_CTL NG maxT 100000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,199,734 | |||
|1,198,893 | |||
|0.07% | |||
|2.3 | |||
|0.10 | |||
|147.66 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 2 mod 6 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,198,893 | |||
|1,165,493 | |||
|2.79% | |||
|4.5 | |||
|2.05 | |||
|73.44 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 30000 H 4 mod 4 n 1 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,165,493 | |||
|1,153,863 | |||
|1.00% | |||
|9.3 | |||
|0.35 | |||
|34.88 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 0 tH 1 n 4 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,153,863 | |||
|1,144,711 | |||
|0.79% | |||
|3.7 | |||
|0.69 | |||
|87.51 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 5 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,144,711 | |||
|1,127,789 | |||
|1.48% | |||
|7.9 | |||
|0.60 | |||
|40.26 | |||
|style="text-align:left" |chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 30000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,127,789 | |||
|1,124,762 | |||
|0.27% | |||
|4.7 | |||
|0.18 | |||
|66.75 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 3 H 0 tH 1 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,124,762 | |||
|1,117,226 | |||
|0.67% | |||
|5.6 | |||
|0.37 | |||
|55.36 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 12 H 0 tH 1 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,117,226 | |||
|1,109,057 | |||
|0.73% | |||
|7.7 | |||
|0.30 | |||
|40.49 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 100000 NG_n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,109,057 | |||
|1,083,097 | |||
|2.34% | |||
|11.4 | |||
|0.63 | |||
|27.06 | |||
|style="text-align:left" |chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 30000 NG_n 5 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,083,097 | |||
|1,077,833 | |||
|0.49% | |||
|11.2 | |||
|0.13 | |||
|26.81 | |||
|style="text-align:left" |chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 100000 NG_n 4 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,077,833 | |||
|1,066,795 | |||
|1.02% | |||
|24.1 | |||
|0.13 | |||
|12.40 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 2 tH 1 n 2 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,066,795 | |||
|1,039,229 | |||
|2.58% | |||
|52.6 | |||
|0.15 | |||
|5.64 | |||
|style="text-align:left" |chr_LRUH 14 chr_H 6 MitM_CTL NG maxT 100000 NG_n 11 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,039,229 | |||
|1,019,286 | |||
|1.92% | |||
|43.5 | |||
|0.13 | |||
|6.63 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 3 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|1,019,286 | |||
|993,556 | |||
|2.52% | |||
|66.8 | |||
|0.11 | |||
|4.24 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 8 H 2 tH 1 n 6 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|993,556 | |||
|985,718 | |||
|0.79% | |||
|78.3 | |||
|0.03 | |||
|3.53 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 1 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|985,718 | |||
|981,095 | |||
|0.47% | |||
|83.7 | |||
|0.02 | |||
|3.27 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 0 n 9 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|981,095 | |||
|975,912 | |||
|0.53% | |||
|79.4 | |||
|0.02 | |||
|3.43 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 1 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|975,912 | |||
|974,180 | |||
|0.18% | |||
|84.6 | |||
|0.01 | |||
|3.20 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 4 n 8 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|974,180 | |||
|971,254 | |||
|0.30% | |||
|96.9 | |||
|0.01 | |||
|2.79 | |||
|style="text-align:left" |MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 12 run | |||
|- | |||
|style="text-align:left" |Terry Ligocki | |||
|971,254 | |||
|970,101 | |||
|0.12% | |||
|105.6 | |||
|0.00 | |||
|2.56 | |||
|style="text-align:left" |MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 12 H 0 tH 0 n 18 run | |||
|} | |||
=== Stage 3 === | |||
Starting from the results of Stage 2, Andrew Ducharme ran "lr_enum_continue" with the maximum number of steps set to 100 million, then "Enumerate.py" with various parameters. A total of 6 Enumerate variations were run. The holdouts were reduced from ~970K TMs to ~870K TMs (a 10.31% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation: | |||
(done to reduce column size: | |||
<math>*^1</math>= % Reduced, | |||
<math>*^2</math>= Compute Time (core-hours), | |||
<math>*^3</math>= Decided, | |||
<math>*^4</math>= Processed) | |||
{| class="wikitable sortable" style="text-align: right" | |||
!rowspan="2" |Done by | |||
!colspan="2" |Holdout TMs | |||
!rowspan="2" |<math>*^1</math> | |||
!rowspan="2" |<math>*^2</math> | |||
!colspan="2" |TMs/sec/core | |||
!rowspan="2" |Description | |||
!rowspan="2" |Data | |||
|- | |||
!Input | |||
!Output | |||
!<math>*^3</math> | |||
!<math>*^4</math> | |||
|- | |||
|style="text-align:left" |Andrew Ducharme | |||
|970,101 | |||
|939,447 | |||
|3.16% | |||
| -- | |||
| -- | |||
| -- | |||
|style="text-align:left" |lr_enum_continue 100_000_000 steps | |||
| rowspan="7" |[https://drive.google.com/drive/folders/1TsSpW27x3LBlu5qmk-cjzCJzgo_3ehyT?usp=drive_link Google Drive] | |||
|- | |- | ||
|style="text-align: | | style="text-align:left" |Andrew Ducharme | ||
| | |895,813 | ||
| | |889,838 | ||
| | |0.67% | ||
| | |609.3 | ||
| | |0.00 | ||
| | |0.41 | ||
|style="text-align:left" | | | style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=8 --no-ctl --lin-steps=0 --time=4 --force --save-freq=1000 | ||
|- | |- | ||
|style="text-align: | |style="text-align:left" |Andrew Ducharme | ||
| | |889,838 | ||
| | |880,278 | ||
|1. | |1.07% | ||
| | |1,638.9 | ||
| | |0.00 | ||
| | |0.15 | ||
|style="text-align:left" |Enumerate.py | |style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=12 --no-ctl --lin-steps=0 --force --save-freq=1000 | ||
|- | |- | ||
|style="text-align: | |style="text-align:left" |Andrew Ducharme | ||
| | |880,278 | ||
| | |877,485 | ||
|0. | |0.32% | ||
|1, | |1,885.5 | ||
| | |0.00 | ||
| | |0.13 | ||
|style="text-align:left" |Enumerate.py | |style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=6 --no-ctl --lin-steps=0 --force --save-freq=1000 | ||
|- | |- | ||
|style="text-align: | |style="text-align:left" |Andrew Ducharme | ||
| | |877,485 | ||
| | |875,062 | ||
| | |0.28% | ||
| | |2,068.8 | ||
| | |0.00 | ||
| | |0.12 | ||
|style="text-align:left" | | |style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=5 --no-ctl --lin-steps=0 --force --save-freq=1000 | ||
|- | |- | ||
|style="text-align: | |style="text-align:left" |Andrew Ducharme | ||
| | |875,062 | ||
| | |873,469 | ||
|0. | |0.18% | ||
|1, | |1,785.4 | ||
| | |0.00 | ||
| | |0.14 | ||
|style="text-align:left" | | |style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=7 --no-ctl --lin-steps=0 --force --save-freq=1000 | ||
|- | |- | ||
|style="text-align: | |style="text-align:left" |Andrew Ducharme | ||
| | |873,469 | ||
| | |870,085 | ||
| | |0.39% | ||
| | |9,270.0 | ||
| | |0.00 | ||
|0. | |0.03 | ||
|style="text-align:left" |Enumerate.py | |style="text-align:left" |Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=2 --tape-limit=500 --time=120 --no-ctl --lin-steps=0 --force --save-freq=1000 | ||
|} | |} | ||
The total time spent on the lr_enum_continue computation was not recorded. | |||
==References== | |||
<!-- | |||
A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute. | A far more efficient pipeline would immediately apply lr_enum_continue out to 1M steps to Terry Ligocki's holdout list. lr_enum_continue, written in C++, is about 400x faster than Enumerate.py at checking for Lin Recursion. Using Enumerate.py meant its Reverse Engineering decider was applied to all holdouts, and solved 74,089 TMs (0.33% of holdouts)...at the cost of roughly 274.1 hours of compute. | ||
--> | |||
[[Category: BB Domains]][[Category:BB(2,6)]] | |||
[[Category: BB Domains]] |
Latest revision as of 13:39, 19 October 2025
The 2-state, 6-symbol Busy Beaver problem, BB(2,6), is unsolved. With cryptids like Hydra in the preceding domain BB(2,5), we know that we must solve a Collatz-like problem in order to solve BB(2,6).
The current BB(2,6) champion 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA
(bbch) was discovered by Pavel Kropitz in May 2023, proving the lower bound:
Top Halters
The scores are given using Knuth's up-arrow notation with an extension to decimal tetration[1]. The 20 highest known scoring machines are:
TM | Approximate sigma score | Discoverer |
---|---|---|
1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)
|
10 ↑↑↑ 3 | Pavel Kropitz |
1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB (bbch)
|
10 ↑↑ 19892.08 | Peacemaker II |
1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ (bbch)
|
10 ↑↑ 91.17 | Pavel Kropitz |
1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA (bbch)
|
10 ↑↑ 70.27 | Shawn Ligocki |
1RB2LB1RZ3LA2LA4RB_1LA3RB4RB1LB5LB0RA (bbch)
|
10 ↑↑ 69.68 | Shawn Ligocki |
1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ (bbch)
|
10 ↑↑ 54.90 | Andrew Ducharme |
1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB (bbch)
|
10 ↑↑ 42.17 | Andrew Ducharme |
1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB (bbch)
|
10 ↑↑ 40.07 | Andrew Ducharme |
1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ (bbch)
|
10 ↑↑ 21.54 | Shawn Ligocki |
1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA (bbch)
|
10 ↑↑ 20.58 | Shawn Ligocki |
1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Shawn Ligocki |
1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ (bbch)
|
10 ↑↑ 17.53 | Andrew Ducharme |
1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA (bbch)
|
10 ↑↑ 17.08 | Andrew Ducharme |
1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA (bbch)
|
10 ↑↑ 15.44 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA (bbch)
|
10 ↑↑ 14.35 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA (bbch)
|
10 ↑↑ 14.17 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA (bbch)
|
10 ↑↑ 14.05 | Andrew Ducharme |
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA (bbch)
|
10 ↑↑ 13.69 | Andrew Ducharme |
1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ (bbch)
|
10 ↑↑ 12.42 | Andrew Ducharme |
1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ (bbch)
|
10 ↑↑ 11.70 | Andrew Ducharme |
All decimal places are truncated.
Phase 1
The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
(done to reduce column size: = % Reduced, = Runtime (hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Terry Ligocki | 2,278,655,696 | 2,109,114,609 | 7.44% | 40.9 | 1,150.90 | 15,468.23 | Reverse_Engineer_Filter.py | Google Drive |
Terry Ligocki | 2,109,114,609 | 683,067,538 | 67.61% | 452.8 | 874.77 | 1,293.79 | CPS_Filter.py --block-size=1 | |
Terry Ligocki | 683,067,538 | 210,993,434 | 69.11% | 396.4 | 330.85 | 478.72 | CPS_Filter.py --block-size=2 | |
Terry Ligocki | 210,993,434 | 141,680,232 | 32.85% | 273.9 | 70.29 | 213.97 | CPS_Filter.py --block-size=3 --max_steps=10_000 | |
Terry Ligocki | 141,680,232 | 66,029,536 | 53.40% | 486.6 | 43.18 | 80.87 | Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000 | |
Terry Ligocki | 66,029,536 | 46,119,004 | 30.15% | 167.4 | 33.05 | 109.59 | Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
Terry Ligocki | 46,119,004 | 39,034,142 | 15.36% | 170.1 | 11.57 | 75.34 | CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000 | |
Terry Ligocki | 39,034,142 | 29,109,512 | 25.43% | 2,221.6 | 1.24 | 4.88 | CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000 | |
Terry Ligocki | 29,109,512 | 24,536,819 | 15.71% | 384.2 | 3.31 | 21.05 | Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 | |
Terry Ligocki | 24,536,819 | 22,302,296 | 9.11% | 1,047.5 | 0.59 | 6.51 | Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000 |
Phase 2
When Phase 1 was completed, a set of deciders/parameters were run to reduce the number of holdout TMs. The details are given in the various Stages below.
Stage 1
Andrew Ducharme ran another pass of "lr_enum_continue" with the maximum number of steps set to 10 million. The holdouts were reduced from ~22.3M TMs to ~20.4M TMs (a 8.72% reduction). The entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with specific C++ code, lr_enum_continue, and a specific parallel queuing system, Slurm:
(done to reduce column size: = % Reduced, = Runtime (hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Andrew Ducharme | 22,302,296 | 20,358,011 | 8.72% | 1,350.0 | 0.40 | 4.59 | lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false | Google Drive |
Stage 2
Starting from the results of Stage 1, Terry Ligocki ran @mxdys' C++ code, "main.exe", using a variety of its deciders with various parameters. A total of 50 variations were run. The holdouts were reduced from ~20.4M TMs to ~907K TMs (a 95.5% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
(done to reduce column size: = % Reduced, = Compute Time (core-hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Input | Output | |||||||
Terry Ligocki | 20,358,011 | 19,500,847 | 4.21% | 22.0 | 10.84 | 257.42 | MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run | Google Drive |
Terry Ligocki | 19,500,847 | 18,747,861 | 3.86% | 86.0 | 2.43 | 63.01 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run | |
Terry Ligocki | 18,747,861 | 4,811,076 | 74.34% | 47.0 | 82.33 | 110.75 | chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run | |
Terry Ligocki | 4,811,076 | 2,982,075 | 38.02% | 17.1 | 29.74 | 78.22 | chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run | |
Terry Ligocki | 2,982,075 | 2,897,340 | 2.84% | 15.2 | 1.55 | 54.64 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run | |
Terry Ligocki | 2,897,340 | 2,850,781 | 1.61% | 16.7 | 0.77 | 48.17 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run | |
Terry Ligocki | 2,850,781 | 2,759,635 | 3.20% | 13.7 | 1.85 | 58.01 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run | |
Terry Ligocki | 2,759,635 | 1,953,426 | 29.21% | 13.6 | 16.48 | 56.42 | chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run | |
Terry Ligocki | 1,953,426 | 1,855,545 | 5.01% | 2.4 | 11.18 | 223.14 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run | |
Terry Ligocki | 1,855,545 | 1,647,269 | 11.22% | 6.6 | 8.80 | 78.40 | MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run | |
Terry Ligocki | 1,647,269 | 1,608,166 | 2.37% | 3.4 | 3.20 | 134.96 | chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |
Terry Ligocki | 1,608,166 | 1,585,745 | 1.39% | 9.6 | 0.65 | 46.35 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run | |
Terry Ligocki | 1,585,745 | 1,555,673 | 1.90% | 5.7 | 1.47 | 77.73 | chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run | |
Terry Ligocki | 1,555,673 | 1,428,534 | 8.17% | 9.3 | 3.78 | 46.31 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run | |
Terry Ligocki | 1,428,534 | 1,340,964 | 6.13% | 0.8 | 29.70 | 484.55 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 10000 NG_n 1 run | |
Terry Ligocki | 1,340,964 | 1,286,439 | 4.07% | 0.8 | 18.40 | 452.56 | chr_LRUH 2 chr_H 2 MitM_CTL NG maxT 3000 NG_n 1 run | |
Terry Ligocki | 1,286,439 | 1,273,911 | 0.97% | 0.8 | 4.20 | 430.88 | chr_LRUH 4 chr_H 0 MitM_CTL NG maxT 30000 NG_n 1 run | |
Terry Ligocki | 1,273,911 | 1,265,198 | 0.68% | 0.8 | 2.88 | 420.73 | chr_LRUH 3 chr_H 1 MitM_CTL NG maxT 3000 NG_n 2 run | |
Terry Ligocki | 1,265,198 | 1,258,925 | 0.50% | 0.9 | 1.99 | 400.83 | chr_LRUH 8 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |
Terry Ligocki | 1,258,925 | 1,242,136 | 1.33% | 0.8 | 5.51 | 412.84 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 1 tH 0 n 1 run | |
Terry Ligocki | 1,242,136 | 1,231,731 | 0.84% | 1.0 | 2.78 | 331.77 | MitM_CTL RWL_mod sim 1001 maxT 3000 H 2 mod 2 n 2 run | |
Terry Ligocki | 1,231,731 | 1,216,646 | 1.22% | 1.0 | 4.15 | 338.72 | MitM_CTL CPS_LRU sim 1001 maxT 3000 LRUH 12 H 0 tH 2 n 2 run | |
Terry Ligocki | 1,216,646 | 1,214,294 | 0.19% | 0.9 | 0.76 | 393.03 | MitM_CTL RWL_mod sim 1001 maxT 30000 H 2 mod 3 n 1 run | |
Terry Ligocki | 1,214,294 | 1,213,431 | 0.07% | 0.9 | 0.28 | 391.30 | chr_LRUH 4 chr_H 2 MitM_CTL NG maxT 30000 NG_n 2 run | |
Terry Ligocki | 1,213,431 | 1,211,390 | 0.17% | 1.1 | 0.52 | 307.13 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 8 H 1 tH 1 n 1 run | |
Terry Ligocki | 1,211,390 | 1,209,989 | 0.12% | 1.1 | 0.35 | 306.09 | chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 100000 NG_n 4 run | |
Terry Ligocki | 1,209,989 | 1,209,974 | 0.00% | 0.9 | 0.00 | 381.42 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 16 H 1 tH 0 n 1 run | |
Terry Ligocki | 1,209,974 | 1,201,890 | 0.67% | 2.5 | 0.90 | 134.19 | chr_LRUH 16 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run | |
Terry Ligocki | 1,201,890 | 1,200,086 | 0.15% | 1.3 | 0.37 | 248.36 | chr_LRUH 10 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run | |
Terry Ligocki | 1,200,086 | 1,199,734 | 0.03% | 1.2 | 0.08 | 270.32 | chr_asth 0 chr_LRUH 3 chr_H 3 MitM_CTL NG maxT 100000 NG_n 3 run | |
Terry Ligocki | 1,199,734 | 1,198,893 | 0.07% | 2.3 | 0.10 | 147.66 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 2 mod 6 n 2 run | |
Terry Ligocki | 1,198,893 | 1,165,493 | 2.79% | 4.5 | 2.05 | 73.44 | MitM_CTL RWL_mod sim 1001 maxT 30000 H 4 mod 4 n 1 run | |
Terry Ligocki | 1,165,493 | 1,153,863 | 1.00% | 9.3 | 0.35 | 34.88 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 0 tH 1 n 4 run | |
Terry Ligocki | 1,153,863 | 1,144,711 | 0.79% | 3.7 | 0.69 | 87.51 | MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 5 n 2 run | |
Terry Ligocki | 1,144,711 | 1,127,789 | 1.48% | 7.9 | 0.60 | 40.26 | chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 30000 NG_n 3 run | |
Terry Ligocki | 1,127,789 | 1,124,762 | 0.27% | 4.7 | 0.18 | 66.75 | MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 3 H 0 tH 1 n 8 run | |
Terry Ligocki | 1,124,762 | 1,117,226 | 0.67% | 5.6 | 0.37 | 55.36 | MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 12 H 0 tH 1 n 2 run | |
Terry Ligocki | 1,117,226 | 1,109,057 | 0.73% | 7.7 | 0.30 | 40.49 | chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 100000 NG_n 3 run | |
Terry Ligocki | 1,109,057 | 1,083,097 | 2.34% | 11.4 | 0.63 | 27.06 | chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 30000 NG_n 5 run | |
Terry Ligocki | 1,083,097 | 1,077,833 | 0.49% | 11.2 | 0.13 | 26.81 | chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 100000 NG_n 4 run | |
Terry Ligocki | 1,077,833 | 1,066,795 | 1.02% | 24.1 | 0.13 | 12.40 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 2 tH 1 n 2 run | |
Terry Ligocki | 1,066,795 | 1,039,229 | 2.58% | 52.6 | 0.15 | 5.64 | chr_LRUH 14 chr_H 6 MitM_CTL NG maxT 100000 NG_n 11 run | |
Terry Ligocki | 1,039,229 | 1,019,286 | 1.92% | 43.5 | 0.13 | 6.63 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 3 run | |
Terry Ligocki | 1,019,286 | 993,556 | 2.52% | 66.8 | 0.11 | 4.24 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 8 H 2 tH 1 n 6 run | |
Terry Ligocki | 993,556 | 985,718 | 0.79% | 78.3 | 0.03 | 3.53 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 1 n 8 run | |
Terry Ligocki | 985,718 | 981,095 | 0.47% | 83.7 | 0.02 | 3.27 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 0 n 9 run | |
Terry Ligocki | 981,095 | 975,912 | 0.53% | 79.4 | 0.02 | 3.43 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 1 n 8 run | |
Terry Ligocki | 975,912 | 974,180 | 0.18% | 84.6 | 0.01 | 3.20 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 4 n 8 run | |
Terry Ligocki | 974,180 | 971,254 | 0.30% | 96.9 | 0.01 | 2.79 | MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 12 run | |
Terry Ligocki | 971,254 | 970,101 | 0.12% | 105.6 | 0.00 | 2.56 | MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 12 H 0 tH 0 n 18 run |
Stage 3
Starting from the results of Stage 2, Andrew Ducharme ran "lr_enum_continue" with the maximum number of steps set to 100 million, then "Enumerate.py" with various parameters. A total of 6 Enumerate variations were run. The holdouts were reduced from ~970K TMs to ~870K TMs (a 10.31% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:
(done to reduce column size: = % Reduced, = Compute Time (core-hours), = Decided, = Processed)
Done by | Holdout TMs | TMs/sec/core | Description | Data | ||||
---|---|---|---|---|---|---|---|---|
Input | Output | |||||||
Andrew Ducharme | 970,101 | 939,447 | 3.16% | -- | -- | -- | lr_enum_continue 100_000_000 steps | Google Drive |
Andrew Ducharme | 895,813 | 889,838 | 0.67% | 609.3 | 0.00 | 0.41 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=8 --no-ctl --lin-steps=0 --time=4 --force --save-freq=1000 | |
Andrew Ducharme | 889,838 | 880,278 | 1.07% | 1,638.9 | 0.00 | 0.15 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=12 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
Andrew Ducharme | 880,278 | 877,485 | 0.32% | 1,885.5 | 0.00 | 0.13 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=6 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
Andrew Ducharme | 877,485 | 875,062 | 0.28% | 2,068.8 | 0.00 | 0.12 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=5 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
Andrew Ducharme | 875,062 | 873,469 | 0.18% | 1,785.4 | 0.00 | 0.14 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=7 --no-ctl --lin-steps=0 --force --save-freq=1000 | |
Andrew Ducharme | 873,469 | 870,085 | 0.39% | 9,270.0 | 0.00 | 0.03 | Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=2 --tape-limit=500 --time=120 --no-ctl --lin-steps=0 --force --save-freq=1000 |
The total time spent on the lr_enum_continue computation was not recorded.
References
- ↑ Shawn Ligocki. 2022. "Extending Up-arrow Notation"