Green's machines: Difference between revisions
Jump to navigation
Jump to search
(List of Milton Green's Machines) |
(No difference)
|
Revision as of 02:18, 12 July 2024
In 1964, Milton W. Green hand-crafted a family of fast-growing Turing Machines with n-states, 2-symbols for all .[1] This family grows roughly as fast as the Ackermann function
Machines
# States | TM | Sigma Score | |
---|---|---|---|
4 | 1LB1RZ_0LC1LC_0LD0LC_1RD1RA (bbch)
|
7 | |
5 | 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1RE1RC (bbch)
|
13 | |
6 | 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1RF1RD (bbch)
|
35 | |
7 | 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1RG1RE (bbch)
|
22,961 | |
8 | 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1RH1RF (bbch)
|
||
9 | 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1RI1RG (bbch)
|
||
10 | 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1RJ1RH (bbch)
|
||
11 | 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1RK1RI (bbch)
|
||
12 | 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1LK1RH_0LL0LK_1RL1RJ (bbch)
|
||
13 | 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1LL1RI_0LM0LL_1RM1RK (bbch)
|
||
14 | 1LB1RZ_0LC1LC_0LD0LC_1LE1RA_0LF0LE_1LG1RD_0LH0LG_1LI1RF_0LJ0LI_1LK1RH_0LL0LK_1LM1RJ_0LN0LM_1RN1RL (bbch)
|
||
15 | 1LD1LB_1LZ1LA_0LB1LD_0LE0LD_1LF1RC_0LG0LF_1LH1RE_0LI0LH_1LJ1RG_0LK0LJ_1LL1RI_0LM0LL_1LN1RK_0LO0LN_1RO1RM (bbch)
|
External Links
- Shawn Ligocki. Green's Machines. 2023. https://www.sligocki.com/2023/10/19/greens-machines.html
References
- ↑ Milton W. Green. “A Lower Bound on Rado’s Sigma Function for Binary Turing Machines”, Proceedings of the IEEE Fifth Annual Symposium on Switching Circuits Theory and Logical Design, 1964, pages 91–94, https://doi.org/10.1109/SWCT.1964.3