Collatz-like: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
MrSolis (talk | contribs)
...
Azerty (talk | contribs)
mNo edit summary
Tags: Reverted Visual edit
Line 1: Line 1:
A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l}
A '''Collatz-like function''' is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:<math display="block">\begin{array}{l}
   c(2k)  & = &  k \\
   c(2k)  & = &  k \\
   c(2k+1) & = & 3k+2 \\
   c(2k+1) & = & {3k+1} \\
\end{array}</math>
\end{array}</math>



Revision as of 09:23, 20 September 2025

A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:c(2k)=kc(2k+1)=3k+1

A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.

Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.

Examples

5-state busy beaver winner

Consider the 5-state busy beaver winner and the generalized configuration:

M(n)=0<A1n0Pascal Michel showed that:

0<A0=M(0)M(3k)5k2+19k+15M(5k+6)M(3k+1)5k2+25k+27M(5k+9)M(3k+2)6k+1201H>01(001)k+110

Starting on a blank tape M(0), these rules iterate 15 times before reaching the halt config.[1]

Hydra

Consider Hydra (a Cryptid) and the generalized configuration:

C(a,b)=0<A203(a2)3b20 Daniel Yuan showed that:0A>020C(3,0)C(2n,0)Halt(9n6)C(2n,b+1)C(3n,b)C(2n+1,b)C(3n+1,b+2)

Where Halt(n) is a halting configuration with n non-zero symbols on the tape.

Starting from C(3,0), this simulates a pseudo-random walk along the b parameter, increasing it by 2 every time a is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function H(2n)=3n(even transition)H(2n+1)=3n+1(odd transition) to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.[2] The first few transitions are displayed below: 0..3O4E6E9O13O19O28E42E63O

Exponential Collatz

Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:K(n)=010n1105C>0Shawn Ligocki showed that: 0A>045K(5)K(4k)Halt(3k+3112)K(4k+1)K(3k+3112)K(4k+2)K(3k+3112)K(4k+3)K(3k+3+12)

Demonstrating Collatz-like behavior with exponential piecewise component functions.

Starting from config K(5), these rules iterate 15 times before reaching the halt config leaving over 1015 non-zero symbols on the tape.[3]

References