Antihydra: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
Tag: Reverted
 
(36 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{machine|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA}}{{unsolved|Does Antihydra run forever?}}{{TM|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA|undecided}}
{{machine|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA}}{{unsolved|Does Antihydra run forever?}}
[[File:Antihydra-depiction.png|right|thumb|Artistic depiction of Antihydra by Jadeix]]
{{TM|1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA|undecided}}, called '''Antihydra''', is a [[BB(6)]] [[Cryptid]]. Its pseudo-random behaviour was first reported [https://discord.com/channels/960643023006490684/1026577255754903572/1256223215206924318 on Discord] by mxdys on 28 June 2024, and Racheline discovered the high-level rules soon after. It was named after the 2-state, 5-symbol [[Turing machine]] called [[Hydra]] for sharing many similarities to it.<ref>[https://discord.com/channels/960643023006490684/960643023530762341/1257053002859286701 Discord conversation where the machine was named]</ref>
'''Antihydra''' is a [[BB(6)]] [[Cryptid]]. It is similar to [[Hydra]] in that it halts if and only if the sequence
 
<math display="block">H_{n+1}=\bigg\lfloor\frac{3}{2}H_n\bigg\rfloor,H_0=8,</math>
Antihydra is known to not generate Sturmian words<ref>DUBICKAS A. ON INTEGER SEQUENCES GENERATED BY LINEAR MAPS. ''Glasgow Mathematical Journal''. 2009;51(2):243-252. doi:[https://doi.org/10.1017/S0017089508004655 10.1017/S0017089508004655]</ref> (Corollary 4).
ever has a cumulative count of odd terms that surpasses twice the cumulative count of even terms.
<table style="margin: auto; text-align: center;"><tr><td style="width: 200px;">[[File:Antihydra-depiction.png|200px]]<br>Artistic depiction of Antihydra by Jadeix</td><td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td>
{|class="wikitable" style="margin-left: auto; margin-right: auto;"
! !!0!!1
|-
!A
|1RB
|1RA
|-
!B
|0LC
|1LE
|-
!C
|1LD
|1LC
|-
!D
|1LA
|0LB
|-
!E
|1LF
|1RE
|-
!F
| ---
|0RA
|}
The transition table of Antihydra.
</td><td>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td style="width: 220px;">[[File:Antihydra award.jpg|220px]]<br>A community trophy - to be awarded to the first person or group who solves the Antihydra problem
</td></tr></table></div>
== Analysis ==
== Analysis ==
===Rules===
Let <math>A(a,b):=0^\infty\;1^a\;0\;1^b\;\textrm{E>}\;0^\infty</math>. Then,<ref name="bl">S. Ligocki, "[https://www.sligocki.com/2024/07/06/bb-6-2-is-hard.html BB(6) is Hard (Antihydra)]" (2024). Accessed 22 July 2024.</ref>
Let <math>A(a,b):=0^\infty\;1^a\;0\;1^b\;\textrm{E>}\;0^\infty</math>. Then<ref name="bl">S. Ligocki, "[https://www.sligocki.com/2024/07/06/bb-6-2-is-hard.html BB(6) is Hard (Antihydra)]" (2024). Accessed 22 July 2024.</ref>,
<math display="block">\begin{array}{|lll|}\hline
<math display="block">\begin{array}{|lll|}\hline
A(a,2b)& \xrightarrow{2a+3b^2+12b+11}& A(a+2,3b+2),\\
A(a,2b)& \xrightarrow{2a+3b^2+12b+11}& A(a+2,3b+2),\\
Line 12: Line 41:
A(a+1,2b+1)&\xrightarrow{3b^2+12b+5}& A(a,3b+3).\\\hline
A(a+1,2b+1)&\xrightarrow{3b^2+12b+5}& A(a,3b+3).\\\hline
\end{array}</math>
\end{array}</math>
===Proof===
<div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content">
Consider the partial configuration <math>P(m,n):=0\;1^m\;\textrm{E>}\;0\;1^n\;0^\infty</math>. The configuration after two steps is <math>0\;1^{m-1}\;0\;\textrm{A>}\;1^{n+1}\;0^\infty</math>. We note the following shift rule:
Consider the partial configuration <math>P(m,n):=0\;1^m\;\textrm{E>}\;0\;1^n\;0^\infty</math>. The configuration after two steps is <math>0\;1^{m-1}\;0\;\textrm{A>}\;1^{n+1}\;0^\infty</math>. We note the following shift rule:
<math display="block">\begin{array}{|c|}\hline\textrm{A>}\;1^s\xrightarrow{s}1^s\;\textrm{A>}\\\hline\end{array}</math>
<math display="block">\begin{array}{|c|}\hline\textrm{A>}\;1^s\xrightarrow{s}1^s\;\textrm{A>}\\\hline\end{array}</math>
Line 20: Line 49:
<math display="block">\begin{array}{|c|}\hline P(m,n)\xrightarrow{2n+12}P(m-2,n+3)\text{ if }m\ge 4.\\\hline\end{array}</math>
<math display="block">\begin{array}{|c|}\hline P(m,n)\xrightarrow{2n+12}P(m-2,n+3)\text{ if }m\ge 4.\\\hline\end{array}</math>
With <math>A(a,b)</math> we have <math>P(b,0)</math>. As a result, we can apply this rule <math display="inline>\big\lfloor\frac{1}{2}b\big\rfloor-1</math> times (assuming <math>b\ge 4</math>), which creates two possible scenarios:
With <math>A(a,b)</math> we have <math>P(b,0)</math>. As a result, we can apply this rule <math display="inline>\big\lfloor\frac{1}{2}b\big\rfloor-1</math> times (assuming <math>b\ge 4</math>), which creates two possible scenarios:
#If <math>b\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(b/2)-2}(2\times 3i+12)=\textstyle\frac{3}{4}b^2+\frac{3}{2}b-6</math> steps we arrive at <math display="inline">P\Big(2,\frac{3}{2}b-3\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;011\;\textrm{E>}\;0\;1^{(3b)/2-3}\;0^\infty</math>. After <math>3b+4</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<C}\;00\;1^{(3b)/2}\;0^\infty</math>, which then leads to <math>0^\infty\;\textrm{<C}\;1^a\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a</math> steps. After five more steps, we reach <math>0^\infty\;1\;\textrm{E>}\;1^{a+2}\;00\;1^{(3b)/2}\;0^\infty</math>, from which another shift rule must be applied:<math display="block">\begin{array}{|c|}\hline\textrm{E>}\;1^s\xrightarrow{s}1^s\;\textrm{E>}\\\hline\end{array}</math>Doing so allows us to get the configuration <math>0^\infty\;1^{a+3}\;\textrm{E>}\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a+2</math> steps. In six steps we have <math>0^\infty\;1^{a+2}\;011\;\textrm{E>}\;1^{(3b)/2}\;0^\infty</math>, so we use the shift rule again, ending at <math>0^\infty\;1^{a+2}\;0\;1^{(3b)/2+2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a+2,\frac{3}{2}b+2\Big)</math>, <math display="inline">\frac{3}{2}b</math> steps later. This gives a total of <math display="inline">2a+\frac{3}{4}b^2+6b+11</math> steps.
#If <math>b\equiv0\ (\operatorname{mod}2)</math>, then in <math>\sum_{i=0}^{(b/2)-2}(2\times 3i+12)=\textstyle\frac{3}{4}b^2+\frac{3}{2}b-6</math> steps we arrive at <math display="inline">P\Big(2,\frac{3}{2}b-3\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;011\;\textrm{E>}\;0\;1^{(3b)/2-3}\;0^\infty</math>. After <math>3b+4</math> steps this is <math>0^\infty\;1^a\;\textrm{<C}\;00\;1^{(3b)/2}\;0^\infty</math>, which then leads to <math>0^\infty\;\textrm{<C}\;1^a\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a</math> steps. After five more steps, we reach <math>0^\infty\;1\;\textrm{E>}\;1^{a+2}\;00\;1^{(3b)/2}\;0^\infty</math>, from which another shift rule must be applied:<math display="block">\begin{array}{|c|}\hline\textrm{E>}\;1^s\xrightarrow{s}1^s\;\textrm{E>}\\\hline\end{array}</math>Doing so allows us to get the configuration <math>0^\infty\;1^{a+3}\;\textrm{E>}\;00\;1^{(3b)/2}\;0^\infty</math> in <math>a+2</math> steps. In six steps we have <math>0^\infty\;1^{a+2}\;011\;\textrm{E>}\;1^{(3b)/2}\;0^\infty</math>, so we use the shift rule again, ending at <math>0^\infty\;1^{a+2}\;0\;1^{(3b)/2+2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a+2,\frac{3}{2}b+2\Big)</math>, <math display="inline">\frac{3}{2}b</math> steps later. This gives a total of <math display="inline">2a+\frac{3}{4}b^2+6b+11</math> steps.
#If <math>b\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{4}b^2-\frac{27}{4}</math> steps we arrive at <math display="inline">P\Big(3,\frac{3b-9}{2}\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;0111\;\textrm{E>}\;0\;1^{(3b-9)/2}\;0^\infty</math>. After <math>3b+2</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty</math>. If <math>a=0</math> then we have reached the undefined <code>F0</code> transition with a total of <math display="inline">\frac{3}{4}b^2+3b-\frac{19}{4}</math> steps. Otherwise, continuing for six steps gives us <math>0^\infty\;1^{a-1}\;0111\;\textrm{E>}\;1^{(3b-3)/2}\;0^\infty</math>. We conclude with the configuration <math>0^\infty\;1^{a-1}\;0\;1^{(3b+3)/2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a-1,\frac{3b+3}{2}\Big)</math>, in <math display="inline">\frac{3b-3}{2}</math> steps. This gives a total of <math display="inline">\frac{3}{4}b^2+\frac{9}{2}b-\frac{1}{4}</math> steps.
#If <math>b\equiv1\ (\operatorname{mod}2)</math>, then in <math display="inline">\frac{3}{4}b^2-\frac{27}{4}</math> steps we arrive at <math display="inline">P\Big(3,\frac{3b-9}{2}\Big)</math>. The matching complete configuration is <math>0^\infty\;1^a\;0111\;\textrm{E>}\;0\;1^{(3b-9)/2}\;0^\infty</math>. After <math>3b+2</math> steps this becomes <math>0^\infty\;1^a\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty</math>. If <math>a=0</math> then we have reached the undefined <code>F0</code> transition with a total of <math display="inline">\frac{3}{4}b^2+3b-\frac{19}{4}</math> steps. Otherwise, continuing for six steps gives us <math>0^\infty\;1^{a-1}\;0111\;\textrm{E>}\;1^{(3b-3)/2}\;0^\infty</math>. We conclude with the configuration <math>0^\infty\;1^{a-1}\;0\;1^{(3b+3)/2}\;\textrm{E>}\;0^\infty</math>, equal to <math display="inline">A\Big(a-1,\frac{3b+3}{2}\Big)</math>, in <math display="inline">\frac{3b-3}{2}</math> steps. This gives a total of <math display="inline">\frac{3}{4}b^2+\frac{9}{2}b-\frac{1}{4}</math> steps.
The information above can be summarized as
The information above can be summarized as
<math display="block">A(a,b)\rightarrow\begin{cases}A\Big(a+2,\frac{3}{2}b+2\Big)&\text{if }b\ge 2,b\equiv0\pmod{2};\\0^\infty\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty&\text{if }b\ge3,b\equiv1\pmod{2},\text{ and }a=0;\\A\Big(a-1,\frac{3b+3}{2}\Big)&\text{if }b\ge3,b\equiv1\pmod{2},\text{ and }a>0.\end{cases}</math>
<math display="block">A(a,b)\rightarrow\begin{cases}A\Big(a+2,\frac{3}{2}b+2\Big)&\text{if }b\ge 2,b\equiv0\pmod{2};\\0^\infty\;\textrm{<F}\;110\;1^{(3b-3)/2}\;0^\infty&\text{if }b\ge3,b\equiv1\pmod{2},\text{ and }a=0;\\A\Big(a-1,\frac{3b+3}{2}\Big)&\text{if }b\ge3,b\equiv1\pmod{2},\text{ and }a>0.\end{cases}</math>
Substituting <math>b\leftarrow 2b</math> for the first case and <math>b\leftarrow 2b+1</math> for the other two yields the final result.
Substituting <math>b\leftarrow 2b</math> for the first case and <math>b\leftarrow 2b+1</math> for the other two yields the final result.
</div></div>
In effect, the halting problem for Antihydra is about whether repeatedly applying the function <math display="inline">f(n)=\Big\lfloor\frac{3n}{2}\Big\rfloor+2</math> will at some point produce more odd values of <math>n</math> than twice the number of even values.
These rules can be modified to use the function <math display="inline">H(n)=\Big\lfloor\frac{3n}{2}\Big\rfloor</math>, or the [[Hydra function]], which strengthens Antihydra's similarities to Hydra.
== Trajectory ==
== Trajectory ==
11 steps are required to enter the configuration <math>A(0, 4)</math> before the [[Collatz-like]] rules are repeatedly applied. Here are the first few iterations:
[[File:Antihydra Walk.png|thumb|Path of parity of repeated applications of Hydra map for Antihydra.]]
[[File:AHydra 0-419.gif|right|thumb|Animation of the blank tape becoming <math>A(6,23)</math> in 419 steps (''[https://wiki.bbchallenge.org/w/images/3/36/AHydra_0-419.gif click to view]'').]]
Starting from a blank tape, Antihydra reaches <math>A(0, 4)</math> in 11 steps and then the rules are repeatedly applied. So far, Antihydra has been simulated to <math>2^{38}</math> rule steps,<ref>https://discord.com/channels/960643023006490684/1026577255754903572/1271528180246773883</ref> at which point <math>a</math> exceeds <math>2^{37}</math>. Here are the first few:
<math display="block">\begin{array}{|c|}\hline A(0,4)\xrightarrow{47}A(2,8)\xrightarrow{111}A(4,14)\xrightarrow{250}A(6,23)\xrightarrow{500}A(5,36)\xrightarrow{1209}A(7,56)\rightarrow\cdots\\\hline\end{array}</math>
<math display="block">\begin{array}{|c|}\hline A(0,4)\xrightarrow{47}A(2,8)\xrightarrow{111}A(4,14)\xrightarrow{250}A(6,23)\xrightarrow{500}A(5,36)\xrightarrow{1209}A(7,56)\xrightarrow{2713}A(9,86)\rightarrow\cdots\\\hline\end{array}</math>
The halting problems for Antihydra and Hydra are connected by the [[Hydra function]], so the heuristic argument that suggests Hydra is [[probviously]] nonhalting can be applied here. After <math>2^{31}</math> rule steps, we have <math>b=1073720884</math><ref name="bl"></ref>, so this machine, if treated as a random process, has an extremely minuscule chance of ever halting.
The trajectory of <math>a</math> values resembles a random walk in which the walker can only move in step sizes +2 or -1 with equal probability, starting at position 0. If <math>P(n)</math> is the probability that the walker will reach position -1 from position <math>n</math>, then it can be seen that <math display="inline">P(n)=\frac{1}{2}P(n-1)+\frac{1}{2}P(n+2)</math>. Solutions to this recurrence relation come in the form <math display="inline"> P(n)=c_0{\left(\frac{\sqrt{5}-1}{2}\right)}^n+c_1+c_2{\left(-\frac{1+\sqrt{5}}{2}\right)}^n</math>, which after applying the appropriate boundary conditions reduces to <math display="inline">P(n)={\left(\frac{\sqrt{5}-1}{2}\right)}^{n+1}</math>. This means that if the walker were to get to the position of the current <math>a</math> value, then the probability of it ever reaching position -1 is less than <math display="inline">{\left( \frac{\sqrt{5}-1}{2} \right)}^{2^{37}}\approx 2.884\times 10^{-28723042565}</math>. This combined with the fact that the expected position of the walker after <math>k</math> steps is <math display="inline">\frac{1}{2}k</math> strongly suggests Antihydra [[probviously]] runs indefinitely.
 
== Code ==
The following Python program implements the abstracted behavior of the Antihydra. Proving whether it halts or not would also solve the Antihydra problem:<syntaxhighlight lang="python" line="1">
# Current value of the iterated Hydra function starting with initial value 8 (the values do not overflow)
h = 8
# (Collatz-like) condition counter that keeps track of how many odd and even numbers have been encountered
c = 0
# If c equals -1 there have been (strictly) more than twice as many odd as even numbers and the program halts
while c != -1:
    # If h is even, add 2 to c so even numbers count twice
    if h % 2 == 0:
        c += 2
    else:
        c -= 1
    # Add the current hydra value divided by two (integer division, rounding down) to itself (Hydra function)
    # Note that integer division by 2 is equivalent to one bit shift to the right (h >> 1)
    h += h//2
</syntaxhighlight>
 
The variable values of this iteration have been put into the On-Line Encyclopedia of Integer Sequences (OEIS):
 
* Hydra function values with Antihydra's starting value 8: https://oeis.org/A386792
* Antihydra's condition values: https://oeis.org/A385902
 
Fast [[Hydra]]/Antihydra simulation code by Greg Kuperberg (who said it could be made faster using FLINT):<syntaxhighlight lang="python2" line="1">
# Python script to demonstrate almost linear time hydra simulation
# using fast multiplication.
# by Greg Kuperberg
 
import time
from gmpy2 import mpz,bit_mask
 
# Straight computation of t steps of hydra
def simple(n,t):
    for s in range(t): n += n>>1
    return n
 
# Accelerated computation of 2**e steps of hydra
def hydra(n,e):
    if e < 9: return simple(n,1<<e)
    t = 1<<(e-1)
    (p3t,m) = (mpz(3)**t,bit_mask(t))
    n = p3t*(n>>t) + hydra(n&m,e-1)
    return p3t*(n>>t) + hydra(n&m,e-1)
 
def elapsed():
    (last,elapsed.mark) = (elapsed.mark,time.process_time())
    return elapsed.mark-last
elapsed.mark = 0
 
(n,e) = (mpz(3),25)
 
elapsed()
print('hydra:  steps=%d hash=%016x time=%.6fs'
    % (1<<e,hash(hydra(n,e)),elapsed()))
 
# Quadratic time algorithm for comparison
# print('simple: steps=%d hash=%016x time=%.6fs'
#    % (1<<e,hash(simple(n,1<<e)),elapsed()))
</syntaxhighlight>
 
==References==
==References==
[[Category:Individual machines]]
[[Category:Individual machines]][[Category:Cryptids]]
[[Category:Cryptids]]

Latest revision as of 03:06, 21 August 2025

Unsolved problem:
Does Antihydra run forever?

1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA (bbch), called Antihydra, is a BB(6) Cryptid. Its pseudo-random behaviour was first reported on Discord by mxdys on 28 June 2024, and Racheline discovered the high-level rules soon after. It was named after the 2-state, 5-symbol Turing machine called Hydra for sharing many similarities to it.[1]

Antihydra is known to not generate Sturmian words[2] (Corollary 4).


Artistic depiction of Antihydra by Jadeix
      
0 1
A 1RB 1RA
B 0LC 1LE
C 1LD 1LC
D 1LA 0LB
E 1LF 1RE
F --- 0RA

The transition table of Antihydra.

      
A community trophy - to be awarded to the first person or group who solves the Antihydra problem

Analysis

Let . Then,[3]

Proof

Consider the partial configuration . The configuration after two steps is . We note the following shift rule:

As a result, we get after steps. Advancing two steps produces . A second shift rule is useful here:
This allows us to reach in steps. Moving five more steps gets us to , which is the same configuration as . Accounting for the head movement creates the condition that . In summary:
With we have . As a result, we can apply this rule times (assuming ), which creates two possible scenarios:

  1. If , then in steps we arrive at . The matching complete configuration is . After steps this is , which then leads to in steps. After five more steps, we reach , from which another shift rule must be applied:
    Doing so allows us to get the configuration in steps. In six steps we have , so we use the shift rule again, ending at , equal to , steps later. This gives a total of steps.
  2. If , then in steps we arrive at . The matching complete configuration is . After steps this becomes . If then we have reached the undefined F0 transition with a total of steps. Otherwise, continuing for six steps gives us . We conclude with the configuration , equal to , in steps. This gives a total of steps.

The information above can be summarized as

Substituting for the first case and for the other two yields the final result.

In effect, the halting problem for Antihydra is about whether repeatedly applying the function will at some point produce more odd values of than twice the number of even values.

These rules can be modified to use the function , or the Hydra function, which strengthens Antihydra's similarities to Hydra.

Trajectory

Path of parity of repeated applications of Hydra map for Antihydra.

Starting from a blank tape, Antihydra reaches in 11 steps and then the rules are repeatedly applied. So far, Antihydra has been simulated to rule steps,[4] at which point exceeds . Here are the first few:

The trajectory of values resembles a random walk in which the walker can only move in step sizes +2 or -1 with equal probability, starting at position 0. If is the probability that the walker will reach position -1 from position , then it can be seen that . Solutions to this recurrence relation come in the form , which after applying the appropriate boundary conditions reduces to . This means that if the walker were to get to the position of the current value, then the probability of it ever reaching position -1 is less than . This combined with the fact that the expected position of the walker after steps is strongly suggests Antihydra probviously runs indefinitely.

Code

The following Python program implements the abstracted behavior of the Antihydra. Proving whether it halts or not would also solve the Antihydra problem:

# Current value of the iterated Hydra function starting with initial value 8 (the values do not overflow)
h = 8
# (Collatz-like) condition counter that keeps track of how many odd and even numbers have been encountered
c = 0
# If c equals -1 there have been (strictly) more than twice as many odd as even numbers and the program halts
while c != -1:
    # If h is even, add 2 to c so even numbers count twice
    if h % 2 == 0:
        c += 2
    else:
        c -= 1
    # Add the current hydra value divided by two (integer division, rounding down) to itself (Hydra function)
    # Note that integer division by 2 is equivalent to one bit shift to the right (h >> 1)
    h += h//2

The variable values of this iteration have been put into the On-Line Encyclopedia of Integer Sequences (OEIS):

Fast Hydra/Antihydra simulation code by Greg Kuperberg (who said it could be made faster using FLINT):

# Python script to demonstrate almost linear time hydra simulation
# using fast multiplication. 
# by Greg Kuperberg

import time
from gmpy2 import mpz,bit_mask

# Straight computation of t steps of hydra
def simple(n,t):
    for s in range(t): n += n>>1
    return n

# Accelerated computation of 2**e steps of hydra
def hydra(n,e):
    if e < 9: return simple(n,1<<e)
    t = 1<<(e-1)
    (p3t,m) = (mpz(3)**t,bit_mask(t))
    n = p3t*(n>>t) + hydra(n&m,e-1)
    return p3t*(n>>t) + hydra(n&m,e-1)

def elapsed():
    (last,elapsed.mark) = (elapsed.mark,time.process_time())
    return elapsed.mark-last
elapsed.mark = 0

(n,e) = (mpz(3),25)

elapsed()
print('hydra:  steps=%d hash=%016x time=%.6fs'
    % (1<<e,hash(hydra(n,e)),elapsed()))

# Quadratic time algorithm for comparison
# print('simple: steps=%d hash=%016x time=%.6fs'
#     % (1<<e,hash(simple(n,1<<e)),elapsed()))

References

  1. Discord conversation where the machine was named
  2. DUBICKAS A. ON INTEGER SEQUENCES GENERATED BY LINEAR MAPS. Glasgow Mathematical Journal. 2009;51(2):243-252. doi:10.1017/S0017089508004655
  3. S. Ligocki, "BB(6) is Hard (Antihydra)" (2024). Accessed 22 July 2024.
  4. https://discord.com/channels/960643023006490684/1026577255754903572/1271528180246773883