|
|
(9 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| {{machine|1RB2RA1LC_2LC1RB2RB_---2LA1LA}}{{unsolved|Does Bigfoot run forever?}}{{TM|1RB2RA1LC_2LC1RB2RB_---2LA1LA|non-halt}} | | {{machine|1RB2RA1LC_2LC1RB2RB_---2LA1LA}}{{unsolved|Does Bigfoot run forever?}} |
| '''Bigfoot''' is a [[BB(3,3)]] [[Cryptids|Cryptid]]. It simulates the Collatz-like function
| | '''Bigfoot''' ({{TM|1RB2RA1LC_2LC1RB2RB_---2LA1LA}}) is a [[BB(3,3)]] [[Cryptids|Cryptid]]. Its low-level behaviour was first shared [https://discord.com/channels/960643023006490684/1084047886494470185/1163168233445130270 over Discord] by savask on 14 Oct 2023, and within two days, Shawn Ligocki described the high-level rules shown below, whose attributes inspired the [[Turing machine|Turing machine's]] name.<ref name="b">S. Ligocki, "[https://www.sligocki.com/2023/10/16/bb-3-3-is-hard.html BB(3, 3) is Hard (Bigfoot)] (2024). Accessed 22 July 2024.</ref> |
| | <div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;"> |
| | {|class="wikitable" style="margin-left: auto; margin-right: auto;" |
| | ! !!0!!1!!2 |
| | |- |
| | !A |
| | |1RB |
| | |2RA |
| | |1LC |
| | |- |
| | !B |
| | |2LC |
| | |1RB |
| | |2RB |
| | |-align="center" |
| | !C |
| | | --- |
| | |2LA |
| | |1LA |
| | |} |
| | The transition table of Bigfoot.</div> |
|
| |
|
| <math display="block">\begin{array}{l}
| | In May of 2024, Iijil [https://github.com/sligocki/sligocki.github.io/issues/8#issuecomment-2140887228 compiled] Bigfoot into a 7-state 2-symbol machine {{TM|0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB}}. |
| A(a, & 6k, & c) & \to & A(a, & 8k+c-1, & 2) & \text{if} & 8k+c \ge 1 \\
| |
| A(a, & 6k+1, & c) & \to & A(a+1, & 8k+c-1, & 3) & \text{if} & 8k+c \ge 1 \\
| |
| A(a, & 6k+2, & c) & \to & A(a-1, & 8k+c+3, & 2) & \text{if} & a \ge 1 \\
| |
| A(a, & 6k+3, & c) & \to & A(a, & 8k+c+1, & 5) \\
| |
| A(a, & 6k+4, & c) & \to & A(a+1, & 8k+c+3, & 2) \\
| |
| A(a, & 6k+5, & c) & \to & A(a, & 8k+c+5, & 3) \\
| |
| \end{array}</math>
| |
|
| |
|
| <math display="block">A(0, 6k+2, c) \to \text{Halt}(16k+2c+7)</math> | | == Analysis == |
| | Let <math>A(a,b,c):=0^\infty\;12^a\;1^{2b}\;\textrm{<A}\;1^{2c}\;0^\infty</math>. Then, |
| | <math display="block">\begin{array}{|l l l|}\hline A(a,6b,c)&\xrightarrow{4a+(2b+1)48b+(12b+1)2c+13}&A(a,8b+c-1,2),\\A(a,6b+1,c)&\xrightarrow{4a+(6b+5)16b+(4b+1)6c+29}&A(a+1,8b+c-1,3),\\A(0,6b+2,c)&\xrightarrow{(b+1)96b+(3b+1)8c+18}&0^\infty\;\textrm{<C}\;1^{16b+2c+5}\;2\;0^\infty,\\A(a,6b+2,c)&\xrightarrow{4a+(2b+3)48b+(12b+7)2c+51}&A(a-1,8b+c+3,2)\text{ if }a\ge1,\\A(a,6b+3,c)&\xrightarrow{4a+(6b+7)16b+(12b+5)2c+91}&A(a,8b+c+1,5),\\A(a,6b+4,c)&\xrightarrow{4a+(2b+3)48b+(12b+7)2c+63}&A(a+1,8b+c+3,2),\\A(a,6b+5,c)&\xrightarrow{4a+(6b+11)16b+(4b+3)6c+103}&A(a,8b+c+5,3).\\\hline\end{array}</math> |
| | <div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content"> |
| | For now, we will work with the slightly different configuration <math>A'(a,b,c):=0^\infty\;12^a\;1^b\;\textrm{<A}\;1^c\;0^\infty</math>. Consider the partial configuration <math>P(m,n):=1^m\;\textrm{<A}\;1^n\;0^\infty</math>. We first require the following shift rule: |
| | <math display="block">\begin{array}{|l|}\hline\textrm{A>}\;1^s\xrightarrow{s}2^s\;\textrm{A>}\\\hline\end{array}</math> |
| | Using this shift rule, we get <math>1^{m-1}\;2^{n+1}\;\textrm{A>}\;0^\infty</math> after <math>n+1</math> steps, followed by <math>1^{m-1}\;2^n\;\textrm{<C}\;122\;0^\infty</math> four steps later. Observing that <math>22\;\textrm{<C}</math> becomes <math>\textrm{<C}\;11</math> in two steps leads to another shift rule: |
| | <math display="block">\begin{array}{|l|}\hline2^{2s}\;\textrm{<C}\xrightarrow{2s}\textrm{<C}\;1^{2s}\\\hline\end{array}</math> |
| | From here, there are two different scenarios depending on if <math>n</math> is even or odd, given below as histories of transitions that use the aforementioned shift rules: |
| | #If <math>n\equiv0\ (\operatorname{mod}2)</math>, then what follows is:<math display="block">\begin{array}{|l|}\hline 1^{m-1}\;2^n\;\textrm{<C}\;122\;0^\infty \xrightarrow{n} 1^{m-1}\;\textrm{<C}\;1^{n+1}\;22\;0^\infty\xrightarrow{4}1^{m-3}\;\textrm{<A}\;1^{n+3}\;22\;0^\infty\xrightarrow{n+4}\\ |
| | 1^{m-4}\;2^{n+4}\;\textrm{A>}\;22\;0^\infty\xrightarrow{1}1^{m-4}\;2^{n+4}\;\textrm{<C}\;12\;0^\infty\xrightarrow{n+4}1^{m-4}\;\textrm{<C}\;1^{n+5}\;2\;0^\infty\xrightarrow{4}\\1^{m-6}\;\textrm{<A}\;1^{n+7}\;2\;0^\infty\xrightarrow{n+8}1^{m-7}\;2^{n+8}\;\textrm{A>}\;2\;0^\infty\xrightarrow{1}1^{m-7}\;2^{n+8}\;\textrm{<C}\;1\;0^\infty\xrightarrow{n+8}\\1^{m-7}\;\textrm{<C}\;1^{n+9}\;0^\infty\xrightarrow{4}1^{m-9}\;\textrm{<A}\;1^{n+11}\;0^\infty\\\hline\end{array}</math>Therefore, we have<math display="block">\begin{array}{|l|}\hline P(m,n)\xrightarrow{6n+43}P(m-9,n+11)\text{ if }m\ge9\text{ and }n\equiv0\ (\operatorname{mod}2).\\\hline\end{array}</math> |
| | # If <math>n\equiv1\ (\operatorname{mod}2)</math>, then what follows is:<math display="block">\begin{array}{|l|}\hline 1^{m-1}\;2^n\;\textrm{<C}\;122\;0^\infty \xrightarrow{n-1} 1^{m-1}\;2\;\textrm{<C}\;1^n\;22\;0^\infty \xrightarrow{1}1^{m-1}\;\textrm{<A}\;1^{n+1}\;22\;0^\infty \xrightarrow{n+2}\\ 1^{m-2}\;2^{n+2}\;\textrm{A>}\;22\;0^\infty \xrightarrow{1} 1^{m-2}\;2^{n+2}\;\textrm{<C}\;12\;0^\infty \xrightarrow{n+1}1^{m-2}\;2\;\textrm{<C}\;1^{n+2}\;2\;0^\infty \xrightarrow{1}\\ 1^{m-2}\;\textrm{<A}\;1^{n+3}\;2\;0^\infty \xrightarrow{n+4} 1^{m-3}\;2^{n+4}\;\textrm{A>}\;2\;0^\infty\xrightarrow{1}1^{m-3}\;2^{n+4}\;\textrm{<C}\;1\;0^\infty\xrightarrow{n+3}\\1^{m-3}\;2\;\textrm{<C}\;1^{n+4}\;0^\infty\xrightarrow{1}1^{m-3}\;\textrm{<A}\;1^{n+5}\;0^\infty\\\hline\end{array}</math>Therefore, we have |
| | <math display="block">\begin{array}{|l|}\hline P(m,n)\xrightarrow{6n+19}P(m-3,n+5)\text{ if }m\ge3\text{ and }n\equiv1\ (\operatorname{mod}2).\\\hline\end{array}</math> |
| | From this we know that Bigfoot's behaviour depends on the value of <math>b</math> modulo 12, and with <math>A'(a,b,c)</math> we have <math>P(b,c)</math>. The following shift rules will be useful: |
| | <math display="block">\begin{array}{|l|l|l|}\hline12^s\;\textrm{<A}\xrightarrow{2s}\textrm{<A}\;21^s&\textrm{B>}\;1^s\xrightarrow{s}1^s\;\textrm{B>}&\textrm{B>}\;2^s\xrightarrow{s}2^s\;\textrm{B>}\\\hline\end{array}</math> |
| | Only even values of <math>b</math> and <math>c</math> are relevant, so there remain six possible scenarios: |
| | #If <math>b\equiv0\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{b/12-1}}(6(16i+c)+43+6(16i+11+c)+19)={\displaystyle\sum_{i=0}^{b/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+\frac{8}{3}b+bc</math> steps we arrive at <math display="inline">P\Big(0,16\times\frac{b}{12}+c\Big)</math>, or <math>0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty</math> when considering the complete configuration. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{1}0^\infty\;1\;\textrm{B>}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{2a+4b/3+c}\\0^\infty\;12^a\;1^{4b/3+c+1}\;\textrm{B>}\;0^\infty\xrightarrow{12}0^\infty\;12^a\;1^{4b/3+c-2}\;\textrm{<A}\;1^4\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4}{3}b+c\ge2</math>, then we will reach <math display="inline">A'\Big(a,\frac{4}{3}b+c-2,4\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+13</math> steps. |
| | #If <math>b\equiv2\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{(b-2)/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+bc-2c-\frac{8}{3}</math> steps we arrive at <math display="inline">P\Big(2,\frac{4(b-2)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;11\;\textrm{<A}\;1^{(4b-2)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;11\;\textrm{<A}\;1^{4(b-2)/3+c}\;0^\infty\xrightarrow{4(b-2)/3+c+1}0^\infty\;12^a\;1\;2^{4(b-2)/3+c+1}\;\textrm{A>}\;0^\infty\xrightarrow{4}\\0^\infty\;12^a\;1\;2^{4(b-2)/3+c}\;\textrm{<C}\;122\;0^\infty\xrightarrow{4(b-2)/3+c}0^\infty\;12^a\;1\;\textrm{<C}\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;12^a\;\textrm{<A}\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;1\;\textrm{B>}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{4(b-2)/3+2a+c+4}0^\infty\;12^{a+1}\;1^{4(b-2)/3+c+1}\;22\;\textrm{B>}\;0^\infty\xrightarrow{18}\\0^\infty\;12^{a+1}\;1^{4(b-2)/3+c-2}\;\textrm{<A}\;1^6\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4(b-2)}{3}+c\ge 2</math>, then we will reach <math display="inline">A'\Big(a+1,\frac{4b-14}{3}+c,6\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+\frac{55}{3}</math> steps. |
| | #If <math>b\equiv4\ (\operatorname{mod}12)</math>, then in <math display="inline>\frac{2}{3}b^2-\frac{8}{3}b+bc-4c</math> steps we arrive at <math display="inline">P\Big(4,\frac{4(b-4)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;1111\;\textrm{<A}\;1^{4(b-4)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;1111\;\textrm{<A}\;1^{4(b-4)/3+c}\;0^\infty\xrightarrow{(8b-14)/3+2c}0^\infty\;12^a\;11\;\textrm{<A}\;2\;1^{4(b-4)/3+c+1}\;22\;0^\infty\xrightarrow{3}\\0^\infty\;12^a\;1\;\textrm{<A}\;1^{4(b-4)/3+c+3}\;22\;0^\infty\xrightarrow{4(b-4)/3+c+4}0^\infty\;12^a\;2^{4(b-4)/3+c+4}\;\textrm{A>}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;12^a\;2^{4(b-4)/3+c+4}\;\textrm{<C}\;12\;0^\infty\xrightarrow{4(b-4)/3+c+4}0^\infty\;12^a\;\textrm{<C}\;1^{4(b-4)/3+c+5}\;2\;0^\infty\xrightarrow{1}\\0^\infty\;12^{a-1}\;1\;\textrm{<A}\;1^{4(b-4)/3+c+6}\;2\;0^\infty\xrightarrow{4(b-4)/3+c+7}0^\infty\;12^{a-1}\;2^{4(b-4)/3+c+7}\;\textrm{A>}\;2\;0^\infty\xrightarrow{1}\\0^\infty\;12^{a-1}\;2^{4(b-4)/3+c+7}\;\textrm{<C}\;1\;0^\infty\xrightarrow{4(b-4)/3+c+6}0^\infty\;12^{a-1}\;2\;\textrm{<C}\;1^{4(b-4)/3+c+7}\;0^\infty\xrightarrow{1}\\0^\infty\;12^{a-1}\;\textrm{<A}\;1^{4(b-4)/3+c+8}\;0^\infty\xrightarrow{2(a-1)}0^\infty\;\textrm{<A}\;21^{a-1}\;1^{4(b-4)/3+c+8}\;0^\infty\xrightarrow{1}\\0^\infty\;1\;\textrm{B>}\;21^{a-1}\;1^{4(b-4)/3+c+8}\;0^\infty\xrightarrow{2a+4(b-4)/3+c+6}0^\infty\;12^{a-1}\;1^{4(b-4)/3+c+9}\;\textrm{B>}\;0^\infty\xrightarrow{12}\\0^\infty\;12^{a-1}\;1^{4(b-4)/3+c+6}\;\textrm{<A}\;1^4\;0^\infty\\\hline\end{array}</math>This means that if <math>a=0</math>, then Bigfoot will reach the undefined <code>C0</code> transition with the configuration <math>0^\infty\;\textrm{<C}\;1^{(4b-1)/3+c}\;2\;0^\infty</math> in <math display="inline">\frac{2}{3}b^2+\frac{8}{3}b+bc-\frac{10}{3}</math> steps. Otherwise, it will proceed to reach <math display="inline">A'\Big(a-1,\frac{4b+2}{3}+c,4\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+\frac{20}{3}b+bc+3c+\frac{41}{3}</math> steps. |
| | #If <math>b\equiv6\ (\operatorname{mod}12)</math>, then in <math display="inline">\frac{2}{3}b^2-\frac{16}{3}b+bc-6c+8</math> steps we arrive at <math display="inline">P\Big(6,\frac{4(b-6)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;111111\;\textrm{<A}\;1^{4(b-6)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;111111\;\textrm{<A}\;1^{4(b-6)/3+c}\;0^\infty\xrightarrow{16b/3+4c-14}0^\infty\;12^a\;11\;\textrm{<C}\;1^{4(b-6)/3+c+5}\;2\;0^\infty\xrightarrow{4}\\0^\infty\;12^a\;\textrm{<A}\;1^{4(b-6)/3+c+7}\;2\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;1^{4(b-6)/3+c+7}\;2\;0^\infty\xrightarrow{1}\\0^\infty\;1\;\textrm{B>}\;21^a\;1^{4(b-6)/3+c+7}\;2\;0^\infty\xrightarrow{2a+4(b-6)/3+c+8}0^\infty\;12^a\;1^{4(b-6)/3+c+8}\;2\;\textrm{B>}\;0^\infty\xrightarrow{60}\\0^\infty\;12^a\;1^{4(b-6)/3+c+2}\;\textrm{<A}\;1^{10}\;0^\infty\\\hline\end{array}</math>This means that we will reach <math display="inline">A'\Big(a,\frac{4}{3}b+c-6,10\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+\frac{4}{3}b+bc-c+59</math> steps. |
| | #If <math>b\equiv8\ (\operatorname{mod}12)</math>, then in <math display="inline>\frac{2}{3}b^2-8b+bc-8c+\frac{64}{3}</math> steps we arrive at <math display="inline">P\Big(8,\frac{4(b-8)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;1^8\;\textrm{<A}\;1^{4(b-8)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;1^8\;\textrm{<A}\;1^{4(b-8)/3+c}\;0^\infty\xrightarrow{(16b-62)/3+4c}0^\infty\;12^a\;11\;\textrm{<A}\;1^{4(b-8)/3+c+7}\;2\;0^\infty\xrightarrow{4(b-8)/3+c+8}\\0^\infty\;12^a\;1\;2^{4(b-8)/3+c+8}\;\textrm{A>}\;2\;0^\infty\xrightarrow{1}0^\infty\;12^a\;1\;2^{4(b-8)/3+c+8}\;\textrm{<C}\;1\;0^\infty\xrightarrow{4(b-8)/3+c+8}\\0^\infty\;12^a\;1\;\textrm{<C}\;1^{4(b-8)/3+c+9}\;0^\infty\xrightarrow{1}0^\infty\;12^a\;\textrm{<A}\;2\;1^{4(b-8)/3+c+9}\;0^\infty\xrightarrow{2a}\\0^\infty\;\textrm{<A}\;21^a\;2\;1^{4(b-8)/3+c+9}\;0^\infty\xrightarrow{1}0^\infty\;1\;\textrm{B>}\;21^a\;2\;1^{4(b-8)/3+c+9}\;0^\infty\xrightarrow{2a+4(b-8)/3+c+10}\\0^\infty\;12^{a+1}\;1^{4(b-8)/3+c+9}\;\textrm{B>}\;0^\infty\xrightarrow{12}0^\infty\;12^{a+1}\;1^{4(b-8)/3+c+6}\;\textrm{<A}\;1^4\;0^\infty\\\hline\end{array}</math>This means that we will reach <math display="inline">A'\Big(a+1,\frac{4b-14}{3}+c,4\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+\frac{4}{3}b+bc-c+\frac{29}{3}</math> steps. |
| | #If <math>b\equiv10\ (\operatorname{mod}12)</math>, then in <math display="inline">\frac{2}{3}b^2-\frac{32}{3}b+bc-10c+40</math> steps we arrive at <math display="inline">P\Big(10,\frac{4(b-10)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;1^{10}\;\textrm{<A}\;1^{4(b-10)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;1^{10}\;\textrm{<A}\;1^{4(b- 10)/3+c}\;0^\infty\xrightarrow{8b+6c-37}0^\infty\;12^a\;1\;\textrm{<A}\;1^{4(b- 10)/3+c+11}\;0^\infty\xrightarrow{4(b- 10)/3+c+12}\\0^\infty\;12^a\;2^{4(b- 10)/3+c+12}\;\textrm{A>}\;0^\infty\xrightarrow{4}0^\infty\;12^a\;2^{4(b-10)/3+c+11}\;\textrm{<C}\;122\;0^\infty\xrightarrow{4(b-10)/3+c+10}\\0^\infty\;12^a\;2\;\textrm{<C}\;1^{4(b- 10)/3+c+11}\;22\;0^\infty\xrightarrow{1}0^\infty\;12^a\;\textrm{<A}\;1^{4(b-10)/3+c+12}\;22\;0^\infty\xrightarrow{2a}\\0^\infty\;\textrm{<A}\;12^a\;1^{4(b-10)/3+c+12}\;22\;0^\infty\xrightarrow{1}0^\infty\;1\;\textrm{B>}\;12^a\;1^{4(b-10)/3+c+12}\;22\;0^\infty\xrightarrow{2a+4(b-10)/3+c+14}\\0^\infty\;12^a\;1^{4(b-10)/3+c+13}\;22\;\textrm{B>}\;0^\infty\xrightarrow{18}0^\infty\;12^a\;1^{4(b-10)/3+c+10}\;\textrm{<A}\;1^6\;0^\infty\\\hline\end{array}</math>This means that we will reach <math display="inline">A'\Big(a,\frac{4b-10}{3}+c,6\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+\frac{4}{3}b+bc-c+23</math> steps. |
| | The information above can be summarized as |
| | <math display="block">A'(a,b,c)\rightarrow\begin{cases}A'\Big(a,\frac{4}{3}b+c-2,4\Big)&\text{if }b\equiv0\pmod{12}\text{ and }\frac{4}{3}b+c\ge2,\\A'\Big(a+1,\frac{4b-14}{3}+c,6\Big)&\text{if }b\equiv2\pmod{12}\text{ and }\frac{4(b-2)}{3}+c\ge2,\\0^\infty\;\textrm{<C}\;1^{(4b-1)/3+c}\;2\;0^\infty&\text{if }b\equiv4\pmod{12}\text{ and }a=0,\\A'\Big(a-1,\frac{4b+2}{3}+c,4\Big)&\text{if }b\equiv4\pmod{12}\text{ and }a>0,\\A'\Big(a,\frac{4}{3}b+c-6,10\Big)&\text{if }b\equiv6\pmod{12},\\A'\Big(a+1,\frac{4b-14}{3}+c,4\Big)&\text{if }b\equiv8\pmod{12},\\A'\Big(a,\frac{4b-10}{3}+c,6\Big)&\text{if }b\equiv10\pmod{12}.\end{cases}</math> |
| | Using the definitions of <math>A'</math> and <math>A</math> to transform these rules produces this: |
| | <math display="block">A(a,b,c)\rightarrow\begin{cases}A\Big(a,\frac{4}{3}b+c-1,2\Big)&\text{if }b\equiv0\pmod{6}\text{ and }\frac{4}{3}b+c\ge1,\\A\Big(a+1,\frac{4b-7}{3}+c,3\Big)&\text{if }b\equiv1\pmod{6}\text{ and }\frac{4(b-1)}{3}+c\ge1,\\0^\infty\;\textrm{<C}\;1^{(8b-1)/3+2c}\;2\;0^\infty&\text{if }b\equiv2\pmod{6}\text{ and }a=0,\\A\Big(a-1,\frac{4b+1}{3}+c,2\Big)&\text{if }b\equiv2\pmod{6}\text{ and }a>0,\\A\Big(a,\frac{4}{3}b+c-3,5\Big)&\text{if }b\equiv3\pmod{6},\\A\Big(a+1,\frac{4b-7}{3}+c,2\Big)&\text{if }b\equiv4\pmod{6},\\A\Big(a,\frac{4b-5}{3}+c,3\Big)&\text{if }b\equiv5\pmod{6}.\end{cases}</math> |
| | Substituting <math>b\leftarrow6b+k</math> where <math>k</math> is the remainder for each case yields the final result. |
| | </div></div> |
| | Using the floor function, it is possible to describe the behaviour of <math>b</math> and <math>c</math> using a function that is not defined piecewise: |
| | <math display="block">\textstyle\begin{array}{c}f(m,n)=\Big(\frac{4m-3-4(\delta_1(m)-\delta_2(m)+\delta_4(m))-2(3\delta_3(m)+\delta_5(m))}{3}+n,2+\delta_1(m)+3\delta_3(m)+\delta_5(m)\Big),\\\delta_i(m)=\Big\lfloor\frac{m-i}{6}\Big\rfloor-\Big\lfloor\frac{m-i-1}{6}\Big\rfloor=\begin{cases}1&\text{if }m\equiv i\pmod{6},\\0&\text{otherwise.}\end{cases}\end{array}</math> |
| | In effect, the halting problem for Bigfoot is about whether through enough iterations of <math>f(m,n)</math> we encounter more <math>m</math> values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6. |
|
| |
|
| starting from <math>A(2, 1, 2)</math>.
| | An important insight is that if <math>b</math> is odd and <math>c=2</math>, then after four iterations of <math>A</math>, that will remain the case. This allows one to define a configuration that eliminates the <math>c</math> parameter and whose rules use a modulus of 81.<ref name="b"></ref> |
| | |
| It was discovered by Shawn Ligocki on 14 Oct 2023 and shared in the blog post [https://www.sligocki.com/2023/10/16/bb-3-3-is-hard.html BB(3, 3) is Hard].
| |
| | |
| In May 2024, Iijil shared a 7-state, 2-symbol machine with the same behavior as Bigfoot.<ref>P. Michel, "[https://bbchallenge.org/~pascal.michel/ha.html Historical survey of Busy Beavers]". Accessed 3 October 2024.</ref>
| |
|
| |
|
| | == Trajectory == |
| | After 69 steps, Bigfoot will reach the configuration <math>A(2,1,2)</math> before the [[Collatz-like]] rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have <math>a=3999888</math>. Here are the first few: |
| | <math display="block">\begin{array}{|l|}\hline A(2,1,2)\xrightarrow{49}A(3,1,3)\xrightarrow{59}A(4,2,3)\xrightarrow{109}A(3,6,2)\xrightarrow{221}A(3,9,2)\xrightarrow{379}A(3,11,5)\xrightarrow{597}A(3,18,3)\rightarrow\cdots\\\hline\end{array}</math> |
| | There exists a heuristic argument for Bigfoot being [[probviously]] non-halting. By only considering the rules for which <math>a</math> changes, one may notice that the trajectory of <math>a</math> values can be approximated by a random walk in which at each step, the walker moves +1 with probability <math display="inline">\frac{2}{3}</math> or moves -1 with probability <math display="inline">\frac{1}{3}</math>, starting at position 2. If <math>P(n)</math> is the probability that the walker will reach position -1 from position <math>n</math>, then <math display="inline">P(n)=\frac{1}{3}P(n-1)+\frac{2}{3}P(n+1)</math>. Solutions to this recurrence relation come in the form <math display="inline"> P(n)=c_02^{-n}+c_1</math>, which after applying the appropriate boundary conditions reduces to <math display="inline">P(n)=2^{-(n+1)}</math>. As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be <math display="inline">2^{-3999889}\approx 2.697\times 10^{-1204087}</math>. |
| ==References== | | ==References== |
| <references /> | | <references/> |
| | |
| [[Category:Stub]]
| |
| [[Category:Cryptids]] | | [[Category:Cryptids]] |
Unsolved problem:
Does Bigfoot run forever?
Bigfoot (1RB2RA1LC_2LC1RB2RB_---2LA1LA
(bbch)) is a BB(3,3) Cryptid. Its low-level behaviour was first shared over Discord by savask on 14 Oct 2023, and within two days, Shawn Ligocki described the high-level rules shown below, whose attributes inspired the Turing machine's name.[1]
|
0 |
1 |
2
|
A
|
1RB
|
2RA
|
1LC
|
B
|
2LC
|
1RB
|
2RB
|
C
|
---
|
2LA
|
1LA
|
The transition table of Bigfoot.
In May of 2024, Iijil compiled Bigfoot into a 7-state 2-symbol machine 0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB
(bbch).
Analysis
Let
. Then,

Proof
For now, we will work with the slightly different configuration
. Consider the partial configuration
. We first require the following shift rule:

Using this shift rule, we get

after

steps, followed by

four steps later. Observing that

becomes

in two steps leads to another shift rule:

From here, there are two different scenarios depending on if

is even or odd, given below as histories of transitions that use the aforementioned shift rules:
- If
, then what follows is:
Therefore, we have
- If
, then what follows is:
Therefore, we have

From this we know that Bigfoot's behaviour depends on the value of

modulo 12, and with

we have

. The following shift rules will be useful:

Only even values of

and

are relevant, so there remain six possible scenarios:
- If
, then in
steps we arrive at
, or
when considering the complete configuration. What follows is:
This means that if
, then we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that if
, then we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that if
, then Bigfoot will reach the undefined C0
transition with the configuration
in
steps. Otherwise, it will proceed to reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that we will reach
in
steps.
The information above can be summarized as

Using the definitions of

and

to transform these rules produces this:

Substituting

where

is the remainder for each case yields the final result.
Using the floor function, it is possible to describe the behaviour of
and
using a function that is not defined piecewise:

In effect, the halting problem for Bigfoot is about whether through enough iterations of

we encounter more

values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6.
An important insight is that if
is odd and
, then after four iterations of
, that will remain the case. This allows one to define a configuration that eliminates the
parameter and whose rules use a modulus of 81.[1]
Trajectory
After 69 steps, Bigfoot will reach the configuration
before the Collatz-like rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have
. Here are the first few:

There exists a heuristic argument for Bigfoot being
probviously non-halting. By only considering the rules for which

changes, one may notice that the trajectory of

values can be approximated by a random walk in which at each step, the walker moves +1 with probability

or moves -1 with probability

, starting at position 2. If

is the probability that the walker will reach position -1 from position

, then

. Solutions to this recurrence relation come in the form

, which after applying the appropriate boundary conditions reduces to

. As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be

.
References