|
|
Line 36: |
Line 36: |
| From this we know that Bigfoot's behaviour depends on the value of <math>b</math> modulo 12, and with <math>A'(a,b,c)</math> we have <math>P(b,c)</math>. The following shift rules will be useful: | | From this we know that Bigfoot's behaviour depends on the value of <math>b</math> modulo 12, and with <math>A'(a,b,c)</math> we have <math>P(b,c)</math>. The following shift rules will be useful: |
| <math display="block">\begin{array}{|l|l|l|}\hline12^s\;\textrm{<A}\xrightarrow{2s}\textrm{<A}\;21^s&\textrm{B>}\;1^s\xrightarrow{s}1^s\;\textrm{B>}&\textrm{B>}\;2^s\xrightarrow{s}2^s\;\textrm{B>}\\\hline\end{array}</math> | | <math display="block">\begin{array}{|l|l|l|}\hline12^s\;\textrm{<A}\xrightarrow{2s}\textrm{<A}\;21^s&\textrm{B>}\;1^s\xrightarrow{s}1^s\;\textrm{B>}&\textrm{B>}\;2^s\xrightarrow{s}2^s\;\textrm{B>}\\\hline\end{array}</math> |
| Because only even values of <math>b</math> are receiving focus, there remain six possible scenarios:
| | Only even values of <math>b</math> and <math>c</math> are relevant, so there remain six possible scenarios: |
| #If <math>b\equiv0\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{b/12-1}}(6(16i+c)+43+6(16i+11+c)+19)={\displaystyle\sum_{i=0}^{b/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+\frac{8}{3}b+bc</math> steps we arrive at <math display="inline">P\Big(0,16\times\frac{b}{12}+c\Big)</math>, or <math>0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty</math> when considering the complete configuration. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{1}0^\infty\;1\;\textrm{B>}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{2a+4b/3+c}\\0^\infty\;12^a\;1^{4b/3+c+1}\;\textrm{B>}\;0^\infty\xrightarrow{12}0^\infty\;12^a\;1^{4b/3+c-2}\;\textrm{<A}\;1^4\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4}{3}b+c\ge2</math>, then we will reach <math display="inline">A'\Big(a,\frac{4}{3}b+c-2,4\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+13</math> steps. | | #If <math>b\equiv0\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{b/12-1}}(6(16i+c)+43+6(16i+11+c)+19)={\displaystyle\sum_{i=0}^{b/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+\frac{8}{3}b+bc</math> steps we arrive at <math display="inline">P\Big(0,16\times\frac{b}{12}+c\Big)</math>, or <math>0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty</math> when considering the complete configuration. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;\textrm{<A}\;1^{4b/3+c}\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{1}0^\infty\;1\;\textrm{B>}\;21^a\;1^{4b/3+c}\;0^\infty\xrightarrow{2a+4b/3+c}\\0^\infty\;12^a\;1^{4b/3+c+1}\;\textrm{B>}\;0^\infty\xrightarrow{12}0^\infty\;12^a\;1^{4b/3+c-2}\;\textrm{<A}\;1^4\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4}{3}b+c\ge2</math>, then we will reach <math display="inline">A'\Big(a,\frac{4}{3}b+c-2,4\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+13</math> steps. |
| #If <math>b\equiv2\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{(b-2)/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+bc-2c-\frac{8}{3}</math> steps we arrive at <math display="inline">P\Big(2,\frac{4(b-2)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;11\;\textrm{<A}\;1^{(4b-2)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;11\;\textrm{<A}\;1^{4(b-2)/3+c}\;0^\infty\xrightarrow{4(b-2)/3+c+1}0^\infty\;12^a\;1\;2^{4(b-2)/3+c+1}\;\textrm{A>}\;0^\infty\xrightarrow{4}\\0^\infty\;12^a\;1\;2^{4(b-2)/3+c}\;\textrm{<C}\;122\;0^\infty\xrightarrow{4(b-2)/3+c}0^\infty\;12^a\;1\;\textrm{<C}\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;12^a\;\textrm{<A}\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;1\;\textrm{B>}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{4(b-2)/3+2a+c+4}0^\infty\;12^{a+1}\;1^{4(b-2)/3+c+1}\;22\;\textrm{B>}\;0^\infty\xrightarrow{18}\\0^\infty\;12^{a+1}\;1^{4(b-2)/3+c-2}\;\textrm{<A}\;1^6\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4(b-2)}{3}+c\ge 2</math>, then we will reach <math display="inline">A'\Big(a+1,\frac{4b-14}{3}+c,6\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+\frac{55}{3}</math> steps. | | #If <math>b\equiv2\ (\operatorname{mod}12)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{(b-2)/12-1}}4(48i+3c+32)=\frac{2}{3}b^2+bc-2c-\frac{8}{3}</math> steps we arrive at <math display="inline">P\Big(2,\frac{4(b-2)}{3}+c\Big)</math>, or <math>0^\infty\;12^a\;11\;\textrm{<A}\;1^{(4b-2)/3+c}\;0^\infty</math>. What follows is:<math display="block">\begin{array}{|l|}\hline0^\infty\;12^a\;11\;\textrm{<A}\;1^{4(b-2)/3+c}\;0^\infty\xrightarrow{4(b-2)/3+c+1}0^\infty\;12^a\;1\;2^{4(b-2)/3+c+1}\;\textrm{A>}\;0^\infty\xrightarrow{4}\\0^\infty\;12^a\;1\;2^{4(b-2)/3+c}\;\textrm{<C}\;122\;0^\infty\xrightarrow{4(b-2)/3+c}0^\infty\;12^a\;1\;\textrm{<C}\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;12^a\;\textrm{<A}\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{2a}0^\infty\;\textrm{<A}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{1}\\0^\infty\;1\;\textrm{B>}\;21^a\;2\;1^{4(b-2)/3+c+1}\;22\;0^\infty\xrightarrow{4(b-2)/3+2a+c+4}0^\infty\;12^{a+1}\;1^{4(b-2)/3+c+1}\;22\;\textrm{B>}\;0^\infty\xrightarrow{18}\\0^\infty\;12^{a+1}\;1^{4(b-2)/3+c-2}\;\textrm{<A}\;1^6\;0^\infty\\\hline\end{array}</math>This means that if <math display="inline">\frac{4(b-2)}{3}+c\ge 2</math>, then we will reach <math display="inline">A'\Big(a+1,\frac{4b-14}{3}+c,6\Big)</math> in <math display="inline">4a+\frac{2}{3}b^2+4b+bc+c+\frac{55}{3}</math> steps. |
Line 47: |
Line 47: |
| Using the definitions of <math>A'</math> and <math>A</math> to transform these rules produces this: | | Using the definitions of <math>A'</math> and <math>A</math> to transform these rules produces this: |
| <math display="block">A(a,b,c)\rightarrow\begin{cases}A\Big(a,\frac{4}{3}b+c-1,2\Big)&\text{if }b\equiv0\pmod{6}\text{ and }\frac{4}{3}b+c\ge1,\\A\Big(a+1,\frac{4b-7}{3}+c,3\Big)&\text{if }b\equiv1\pmod{6}\text{ and }\frac{4(b-1)}{3}+c\ge1,\\0^\infty\;\textrm{<C}\;1^{(8b-1)/3+2c}\;2\;0^\infty&\text{if }b\equiv2\pmod{6}\text{ and }a=0,\\A\Big(a-1,\frac{4b+1}{3}+c,2\Big)&\text{if }b\equiv2\pmod{6}\text{ and }a>0,\\A\Big(a,\frac{4}{3}b+c-3,5\Big)&\text{if }b\equiv3\pmod{6},\\A\Big(a+1,\frac{4b-7}{3}+c,2\Big)&\text{if }b\equiv4\pmod{6},\\A\Big(a,\frac{4b-5}{3}+c,3\Big)&\text{if }b\equiv5\pmod{6}.\end{cases}</math> | | <math display="block">A(a,b,c)\rightarrow\begin{cases}A\Big(a,\frac{4}{3}b+c-1,2\Big)&\text{if }b\equiv0\pmod{6}\text{ and }\frac{4}{3}b+c\ge1,\\A\Big(a+1,\frac{4b-7}{3}+c,3\Big)&\text{if }b\equiv1\pmod{6}\text{ and }\frac{4(b-1)}{3}+c\ge1,\\0^\infty\;\textrm{<C}\;1^{(8b-1)/3+2c}\;2\;0^\infty&\text{if }b\equiv2\pmod{6}\text{ and }a=0,\\A\Big(a-1,\frac{4b+1}{3}+c,2\Big)&\text{if }b\equiv2\pmod{6}\text{ and }a>0,\\A\Big(a,\frac{4}{3}b+c-3,5\Big)&\text{if }b\equiv3\pmod{6},\\A\Big(a+1,\frac{4b-7}{3}+c,2\Big)&\text{if }b\equiv4\pmod{6},\\A\Big(a,\frac{4b-5}{3}+c,3\Big)&\text{if }b\equiv5\pmod{6}.\end{cases}</math> |
| Substituting <math>b\leftarrow6b+k</math>, where <math>k</math> is the remainder for each case yields the final result. | | Substituting <math>b\leftarrow6b+k</math> where <math>k</math> is the remainder for each case yields the final result. |
| </div></div> | | </div></div> |
| Using floor and ceiling functions, it is possible to describe the behaviour of <math>b</math> and <math>c</math> as one united formula: | | Using the floor function, it is possible to describe the behaviour of <math>b</math> and <math>c</math> as one united formula: |
| <math display="block">\textstyle\begin{array}{c}f(m,n)=\Big(\frac{4m-3-4(\delta_1(m)-\delta_2(m)+\delta_4(m))-2(3\delta_3(m)+\delta_5(m))}{3}+n,2+\delta_1(m)+3\delta_3(m)+\delta_5(m)\Big),\\\delta_i(m)=\Big\lfloor\frac{x-i}{6}\Big\rfloor-\Big\lfloor\frac{x-i-1}{6}\Big\rfloor=\begin{cases}1&\text{if }x\equiv i\pmod{6},\\0&\text{otherwise.}\end{cases}\end{array}</math> | | <math display="block">\textstyle\begin{array}{c}f(m,n)=\Big(\frac{4m-3-4(\delta_1(m)-\delta_2(m)+\delta_4(m))-2(3\delta_3(m)+\delta_5(m))}{3}+n,2+\delta_1(m)+3\delta_3(m)+\delta_5(m)\Big),\\\delta_i(m)=\Big\lfloor\frac{x-i}{6}\Big\rfloor-\Big\lfloor\frac{x-i-1}{6}\Big\rfloor=\begin{cases}1&\text{if }x\equiv i\pmod{6},\\0&\text{otherwise.}\end{cases}\end{array}</math> |
| In effect, the halting problem for Bigfoot is about whether through enough iterations of <math>f(m,n)</math> we encounter more <math>m</math> values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6. | | In effect, the halting problem for Bigfoot is about whether through enough iterations of <math>f(m,n)</math> we encounter more <math>m</math> values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6. |
|
| |
|
| It turns out that if <math>b</math> is odd and <math>c=2</math> then after four iterations of <math>A</math>, that will remain the case. This allows one to define a configuration that eliminates the <math>c</math> parameter and whose rules use a modulus of 81.<ref name="b"></ref>
| | An important insight is that if <math>b</math> is odd and <math>c=2</math>, then after four iterations of <math>A</math>, that will remain the case. This allows one to define a configuration that eliminates the <math>c</math> parameter and whose rules use a modulus of 81.<ref name="b"></ref> |
|
| |
|
| In May 2024, Iijil shared a 7-state, 2-symbol machine, {{TM|0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB}}, that has the same behaviour as Bigfoot.<ref>P. Michel, "[https://bbchallenge.org/~pascal.michel/ha.html Historical survey of Busy Beavers]".</ref> | | In May 2024, Iijil shared a 7-state, 2-symbol machine, {{TM|0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB}}, that has the same behaviour as Bigfoot.<ref>P. Michel, "[https://bbchallenge.org/~pascal.michel/ha.html Historical survey of Busy Beavers]".</ref> |
| == Trajectory == | | == Trajectory == |
| After 69 steps Bigfoot will reach the configuration <math>A(2,1,2)</math> before the [[Collatz-like]] rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have <math>a=3999888</math>. Here are the first few: | | After 69 steps, Bigfoot will reach the configuration <math>A(2,1,2)</math> before the [[Collatz-like]] rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have <math>a=3999888</math>. Here are the first few: |
| <math display="block">\begin{array}{|l|}\hline A(2,1,2)\xrightarrow{49}A(3,1,3)\xrightarrow{59}A(4,2,3)\xrightarrow{109}A(3,6,2)\xrightarrow{221}A(3,9,2)\xrightarrow{379}A(3,11,5)\xrightarrow{597}A(3,18,3)\rightarrow\cdots\\\hline\end{array}</math> | | <math display="block">\begin{array}{|l|}\hline A(2,1,2)\xrightarrow{49}A(3,1,3)\xrightarrow{59}A(4,2,3)\xrightarrow{109}A(3,6,2)\xrightarrow{221}A(3,9,2)\xrightarrow{379}A(3,11,5)\xrightarrow{597}A(3,18,3)\rightarrow\cdots\\\hline\end{array}</math> |
| There exists a heuristic argument for Bigfoot being [[probviously]] nonhalting. After removing the instances in which <math>a</math> does not change, one notices that the trajectory of <math>a</math> values can be approximated by a random walk in which at each step, the walker moves +1 with probability <math display="inline">\frac{2}{3}</math> or moves -1 with probability <math display="inline">\frac{1}{3}</math>, starting at position 2. If <math>P(n)</math> is the probability that the walker will reach position -1 from position <math>n</math>, then <math display="inline">P(n)=\frac{1}{3}P(n-1)+\frac{2}{3}P(n+1)</math>. Solutions to this recurrence relation come in the form <math display="inline"> P(n)=c_02^{-n}+c_1</math>, which after applying the appropriate boundary conditions reduces to <math display="inline">P(n)=2^{-(n+1)}</math>. As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be <math display="inline">2^{-3999889}\approx 2.697\times 10^{-1204087}</math>. | | There exists a heuristic argument for Bigfoot being [[probviously]] nonhalting. After removing the instances in which <math>a</math> does not change, one notices that the trajectory of <math>a</math> values can be approximated by a random walk in which at each step, the walker moves +1 with probability <math display="inline">\frac{2}{3}</math> or moves -1 with probability <math display="inline">\frac{1}{3}</math>, starting at position 2. If <math>P(n)</math> is the probability that the walker will reach position -1 from position <math>n</math>, then <math display="inline">P(n)=\frac{1}{3}P(n-1)+\frac{2}{3}P(n+1)</math>. Solutions to this recurrence relation come in the form <math display="inline"> P(n)=c_02^{-n}+c_1</math>, which after applying the appropriate boundary conditions reduces to <math display="inline">P(n)=2^{-(n+1)}</math>. As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be <math display="inline">2^{-3999889}\approx 2.697\times 10^{-1204087}</math>. |
1RB2RA1LC_2LC1RB2RB_---2LA1LA
(bbch)
Unsolved problem:
Does Bigfoot run forever?
Bigfoot is a BB(3,3) Cryptid. Its low-level behaviour was first shared over Discord by savask on 14 Oct 2023, and within two days, Shawn Ligocki described the high-level rules shown below, whose attributes inspired the Turing machine's name.[1]
|
0 |
1 |
2
|
A
|
1RB
|
2RA
|
1LC
|
B
|
2LC
|
1RB
|
2RB
|
C
|
---
|
2LA
|
1LA
|
The transition table of Bigfoot.
Analysis
Let
. Then,

Proof
For now, we will work with the slightly different configuration
. Consider the partial configuration
. We first require the following shift rule:

Using this shift rule, we get

after

steps, followed by

four steps later. Observing that

becomes

in two steps leads to another shift rule:

From here, there are two different scenarios depending on if

is even or odd, given below as histories of transitions that use the aforementioned shift rules:
- If
, then what follows is:
Therefore, we have
- If
, then what follows is:
Therefore, we have

From this we know that Bigfoot's behaviour depends on the value of

modulo 12, and with

we have

. The following shift rules will be useful:

Only even values of

and

are relevant, so there remain six possible scenarios:
- If
, then in
steps we arrive at
, or
when considering the complete configuration. What follows is:
This means that if
, then we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that if
, then we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that if
, then Bigfoot will reach the undefined C0
transition with the configuration
in
steps. Otherwise, it will proceed to reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that we will reach
in
steps.
- If
, then in
steps we arrive at
, or
. What follows is:
This means that we will reach
in
steps.
The information above can be summarized as

Using the definitions of

and

to transform these rules produces this:

Substituting

where

is the remainder for each case yields the final result.
Using the floor function, it is possible to describe the behaviour of
and
as one united formula:

In effect, the halting problem for Bigfoot is about whether through enough iterations of

we encounter more

values that are congruent to 2 modulo 6 than ones that are congruent to 1 or 4 modulo 6.
An important insight is that if
is odd and
, then after four iterations of
, that will remain the case. This allows one to define a configuration that eliminates the
parameter and whose rules use a modulus of 81.[1]
In May 2024, Iijil shared a 7-state, 2-symbol machine, 0RB1RB_1LC0RA_1RE1LF_1LF1RE_0RD1RD_1LG0LG_---1LB
(bbch), that has the same behaviour as Bigfoot.[2]
Trajectory
After 69 steps, Bigfoot will reach the configuration
before the Collatz-like rules are repeatedly applied. Simulations of Bigfoot have shown that after 24000000 rule steps, we have
. Here are the first few:

There exists a heuristic argument for Bigfoot being
probviously nonhalting. After removing the instances in which

does not change, one notices that the trajectory of

values can be approximated by a random walk in which at each step, the walker moves +1 with probability

or moves -1 with probability

, starting at position 2. If

is the probability that the walker will reach position -1 from position

, then

. Solutions to this recurrence relation come in the form

, which after applying the appropriate boundary conditions reduces to

. As a result, if the walker gets to position 3999888, then the probability of it ever reaching position -1 would be

.
References