BB(2,6)

From BusyBeaverWiki
Revision as of 05:43, 13 October 2025 by ADucharme (talk | contribs) (Stage 3: left-align in table)
Jump to navigation Jump to search

The 2-state, 6-symbol Busy Beaver problem, BB(2,6), is unsolved. With cryptids like Hydra in the preceding domain BB(2,5), we know that we must solve a Collatz-like problem in order to solve BB(2,6).

The current BB(2,6) champion 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch) was discovered by Pavel Kropitz in May 2023, proving the lower bound:S(2,6)>Σ(2,6)>10101010115>103

Top Halters

The scores are given using Knuth's up-arrow notation with an extension to decimal tetration[1]. The 20 highest known scoring machines are:

TM Approximate sigma score Discoverer
1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch) 10 ↑↑↑ 3 Pavel Kropitz
1RB2LA1RZ1RB5RB0RB_2LA4RA3LB5LB5RA4LB (bbch) 10 ↑↑ 19892.08 Peacemaker II
1RB3LA4LB0RB1RA3LA_2LA2RA4LA1RA5RB1RZ (bbch) 10 ↑↑ 91.17 Pavel Kropitz
1RB2LA1RA4LA5RA0LB_1LA3RA2RB1RZ3RB4LA (bbch) 10 ↑↑ 70.27 Shawn Ligocki
1RB2LB1RZ3LA2LA4RB_1LA3RB4RB1LB5LB0RA (bbch) 10 ↑↑ 69.68 Shawn Ligocki
1RB2LB0RA2RA5RA1LB_2LA4RB3LB2RB0RB1RZ (bbch) 10 ↑↑ 54.90 Andrew Ducharme
1RB3RB1LB5LA2LB1RZ_2LA3RA4RB2LB0LA4RB (bbch) 10 ↑↑ 42.17 Andrew Ducharme
1RB3LB0RB5RA1LB1RZ_2LB3LA4RA0RB0RA2LB (bbch) 10 ↑↑ 40.07 Andrew Ducharme
1RB3LB3RB4LA2LA4LA_2LA2RB1LB0RA5RA1RZ (bbch) 10 ↑↑ 21.54 Shawn Ligocki
1RB2LB3LA1RA0RA1RZ_1LA2RB1LB4RB5RA3LA (bbch) 10 ↑↑ 20.58 Shawn Ligocki
1RB0RA3RB0LB1RA2LA_2LA4LB1RA3LB5LB1RZ (bbch) 10 ↑↑ 17.53 Shawn Ligocki
1RB0RA3RB0LB5LA2LA_2LA4LB1RA3LB5LB1RZ (bbch) 10 ↑↑ 17.53 Andrew Ducharme
1RB3RA4LB5RA5LB4RA_2LA1RZ1RB2LA5LA0LA (bbch) 10 ↑↑ 17.08 Andrew Ducharme
1RB3RA4LA1LA0LA1RZ_2LA0LB1RA1LB5LB2RA (bbch) 10 ↑↑ 15.44 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ2LA (bbch) 10 ↑↑ 14.35 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ3RA (bbch) 10 ↑↑ 14.17 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ1LA (bbch) 10 ↑↑ 14.05 Andrew Ducharme
1RB3RB5LA1LA2RA3LA_2LA3RA2LB4LB1RZ0RA (bbch) 10 ↑↑ 13.69 Andrew Ducharme
1RB3LA3RA4LB2LB0LA_2LA5LB2RB0RA0RA1RZ (bbch) 10 ↑↑ 12.42 Andrew Ducharme
1RB0LB4LA2RA2RB1LB_2LA4LA3LB5LA1RA1RZ (bbch) 10 ↑↑ 11.70 Andrew Ducharme

All decimal places are truncated.

Phase 1

The initial phase of enumeration and reduction of holdouts took place in December 2024 and was done by Terry Ligocki using the Ligockis' C++ and Python codes. The initial enumerations generated ~24B(illion) TMs of which ~2,278B were holdout TMs. This was reduced to ~22M holdout TMs (a 99.02% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:

(done to reduce column size: *1= % Reduced, *2= Runtime (hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Terry Ligocki 2,278,655,696 2,109,114,609 7.44% 40.9 1,150.90 15,468.23 Reverse_Engineer_Filter.py Google Drive
Terry Ligocki 2,109,114,609 683,067,538 67.61% 452.8 874.77 1,293.79 CPS_Filter.py --block-size=1
Terry Ligocki 683,067,538 210,993,434 69.11% 396.4 330.85 478.72 CPS_Filter.py --block-size=2
Terry Ligocki 210,993,434 141,680,232 32.85% 273.9 70.29 213.97 CPS_Filter.py --block-size=3 --max_steps=10_000
Terry Ligocki 141,680,232 66,029,536 53.40% 486.6 43.18 80.87 Enumerate.py --max-loops=1_000 --block-size=2 --time=10 --lin-steps=0 --no-reverse-engineer --save-freq=10_000
Terry Ligocki 66,029,536 46,119,004 30.15% 167.4 33.05 109.59 Enumerate.py --max-loops=10_000 --block-size=12 --no-steps --time=0.01 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000
Terry Ligocki 46,119,004 39,034,142 15.36% 170.1 11.57 75.34 CPS_Filter.py --min-block-size=4 --max-block-size=12 --max-steps=1_000
Terry Ligocki 39,034,142 29,109,512 25.43% 2,221.6 1.24 4.88 CPS_Filter.py --min-block-size=4 --max-block-size=6 --max-steps=10_000
Terry Ligocki 29,109,512 24,536,819 15.71% 384.2 3.31 21.05 Enumerate.py --max-loops=10_000 --block-size=6 --recursive --no-steps --time=0.05 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000
Terry Ligocki 24,536,819 22,302,296 9.11% 1,047.5 0.59 6.51 Enumerate.py --max-loops=10_000 --block-size=4 --recursive --no-steps --time=1.00 --lin-steps=0 --no-ctl --no-reverse-engineer --save-freq=10_000

Phase 2

When Phase 1 was completed, a set of deciders/parameters were run to reduce the number of holdout TMs. The details are given in the various Stages below.

Stage 1

Andrew Ducharme ran another pass of "lr_enum_continue" with the maximum number of steps set to 10 million. The holdouts were reduced from ~22.3M TMs to ~20.4M TMs (a 8.72% reduction). The entry in the table below has a rather technical/arcane/cryptic description. This was an effort to capture enough information to rerun that filter in parallel with specific C++ code, lr_enum_continue, and a specific parallel queuing system, Slurm:

(done to reduce column size: *1= % Reduced, *2= Runtime (hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Andrew Ducharme 22,302,296 20,358,011 8.72% 1,350.0 0.40 4.59 lr_enum_continue ${WORK_DIR}chunk_${SLURM_ARRAY_TASK_ID} 10000000 ${WORK_DIR}halt_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}inf_${SLURM_ARRAY_TASK_ID}.txt ${WORK_DIR}unknown_${SLURM_ARRAY_TASK_ID}.txt "" false Google Drive

Stage 2

Starting from the results of Stage 1, Terry Ligocki ran @mxdys' C++ code, "main.exe", using a variety of its deciders with various parameters. A total of 50 variations were run. The holdouts were reduced from ~20.4M TMs to ~907K TMs (a 95.5% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:

(done to reduce column size: *1= % Reduced, *2= Compute Time (core-hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Input Output *3 *4
Terry Ligocki 20,358,011 19,500,847 4.21% 22.0 10.84 257.42 MitM_CTL RWL_mod sim 1001 maxT 3000 H 6 mod 2 n 6 run Google Drive
Terry Ligocki 19,500,847 18,747,861 3.86% 86.0 2.43 63.01 MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 8 run
Terry Ligocki 18,747,861 4,811,076 74.34% 47.0 82.33 110.75 chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 10000 NG_n 3 run
Terry Ligocki 4,811,076 2,982,075 38.02% 17.1 29.74 78.22 chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 10000 NG_n 3 run
Terry Ligocki 2,982,075 2,897,340 2.84% 15.2 1.55 54.64 MitM_CTL RWL_mod sim 1001 maxT 10000 H 8 mod 3 n 6 run
Terry Ligocki 2,897,340 2,850,781 1.61% 16.7 0.77 48.17 chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 30000 NG_n 7 run
Terry Ligocki 2,850,781 2,759,635 3.20% 13.7 1.85 58.01 MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 2 n 6 run
Terry Ligocki 2,759,635 1,953,426 29.21% 13.6 16.48 56.42 chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 30000 NG_n 2 run
Terry Ligocki 1,953,426 1,855,545 5.01% 2.4 11.18 223.14 MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 3 n 1 run
Terry Ligocki 1,855,545 1,647,269 11.22% 6.6 8.80 78.40 MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 8 H 1 tH 1 n 4 run
Terry Ligocki 1,647,269 1,608,166 2.37% 3.4 3.20 134.96 chr_LRUH 14 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run
Terry Ligocki 1,608,166 1,585,745 1.39% 9.6 0.65 46.35 MitM_CTL RWL_mod sim 1001 maxT 10000 H 3 mod 1 n 12 run
Terry Ligocki 1,585,745 1,555,673 1.90% 5.7 1.47 77.73 chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 10000 NG_n 5 run
Terry Ligocki 1,555,673 1,428,534 8.17% 9.3 3.78 46.31 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 2 tH 0 n 2 run
Terry Ligocki 1,428,534 1,340,964 6.13% 0.8 29.70 484.55 chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 10000 NG_n 1 run
Terry Ligocki 1,340,964 1,286,439 4.07% 0.8 18.40 452.56 chr_LRUH 2 chr_H 2 MitM_CTL NG maxT 3000 NG_n 1 run
Terry Ligocki 1,286,439 1,273,911 0.97% 0.8 4.20 430.88 chr_LRUH 4 chr_H 0 MitM_CTL NG maxT 30000 NG_n 1 run
Terry Ligocki 1,273,911 1,265,198 0.68% 0.8 2.88 420.73 chr_LRUH 3 chr_H 1 MitM_CTL NG maxT 3000 NG_n 2 run
Terry Ligocki 1,265,198 1,258,925 0.50% 0.9 1.99 400.83 chr_LRUH 8 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run
Terry Ligocki 1,258,925 1,242,136 1.33% 0.8 5.51 412.84 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 1 tH 0 n 1 run
Terry Ligocki 1,242,136 1,231,731 0.84% 1.0 2.78 331.77 MitM_CTL RWL_mod sim 1001 maxT 3000 H 2 mod 2 n 2 run
Terry Ligocki 1,231,731 1,216,646 1.22% 1.0 4.15 338.72 MitM_CTL CPS_LRU sim 1001 maxT 3000 LRUH 12 H 0 tH 2 n 2 run
Terry Ligocki 1,216,646 1,214,294 0.19% 0.9 0.76 393.03 MitM_CTL RWL_mod sim 1001 maxT 30000 H 2 mod 3 n 1 run
Terry Ligocki 1,214,294 1,213,431 0.07% 0.9 0.28 391.30 chr_LRUH 4 chr_H 2 MitM_CTL NG maxT 30000 NG_n 2 run
Terry Ligocki 1,213,431 1,211,390 0.17% 1.1 0.52 307.13 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 8 H 1 tH 1 n 1 run
Terry Ligocki 1,211,390 1,209,989 0.12% 1.1 0.35 306.09 chr_LRUH 0 chr_H 0 MitM_CTL NG maxT 100000 NG_n 4 run
Terry Ligocki 1,209,989 1,209,974 0.00% 0.9 0.00 381.42 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 16 H 1 tH 0 n 1 run
Terry Ligocki 1,209,974 1,201,890 0.67% 2.5 0.90 134.19 chr_LRUH 16 chr_H 12 MitM_CTL NG maxT 10000 NG_n 2 run
Terry Ligocki 1,201,890 1,200,086 0.15% 1.3 0.37 248.36 chr_LRUH 10 chr_H 6 MitM_CTL NG maxT 30000 NG_n 1 run
Terry Ligocki 1,200,086 1,199,734 0.03% 1.2 0.08 270.32 chr_asth 0 chr_LRUH 3 chr_H 3 MitM_CTL NG maxT 100000 NG_n 3 run
Terry Ligocki 1,199,734 1,198,893 0.07% 2.3 0.10 147.66 MitM_CTL RWL_mod sim 1001 maxT 10000 H 2 mod 6 n 2 run
Terry Ligocki 1,198,893 1,165,493 2.79% 4.5 2.05 73.44 MitM_CTL RWL_mod sim 1001 maxT 30000 H 4 mod 4 n 1 run
Terry Ligocki 1,165,493 1,153,863 1.00% 9.3 0.35 34.88 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 4 H 0 tH 1 n 4 run
Terry Ligocki 1,153,863 1,144,711 0.79% 3.7 0.69 87.51 MitM_CTL RWL_mod sim 1001 maxT 10000 H 6 mod 5 n 2 run
Terry Ligocki 1,144,711 1,127,789 1.48% 7.9 0.60 40.26 chr_LRUH 18 chr_H 8 MitM_CTL NG maxT 30000 NG_n 3 run
Terry Ligocki 1,127,789 1,124,762 0.27% 4.7 0.18 66.75 MitM_CTL CPS_LRU sim 1001 maxT 10000 LRUH 3 H 0 tH 1 n 8 run
Terry Ligocki 1,124,762 1,117,226 0.67% 5.6 0.37 55.36 MitM_CTL CPS_LRU sim 1001 maxT 30000 LRUH 12 H 0 tH 1 n 2 run
Terry Ligocki 1,117,226 1,109,057 0.73% 7.7 0.30 40.49 chr_LRUH 8 chr_H 4 MitM_CTL NG maxT 100000 NG_n 3 run
Terry Ligocki 1,109,057 1,083,097 2.34% 11.4 0.63 27.06 chr_LRUH 20 chr_H 12 MitM_CTL NG maxT 30000 NG_n 5 run
Terry Ligocki 1,083,097 1,077,833 0.49% 11.2 0.13 26.81 chr_LRUH 8 chr_H 8 MitM_CTL NG maxT 100000 NG_n 4 run
Terry Ligocki 1,077,833 1,066,795 1.02% 24.1 0.13 12.40 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 2 tH 1 n 2 run
Terry Ligocki 1,066,795 1,039,229 2.58% 52.6 0.15 5.64 chr_LRUH 14 chr_H 6 MitM_CTL NG maxT 100000 NG_n 11 run
Terry Ligocki 1,039,229 1,019,286 1.92% 43.5 0.13 6.63 MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 3 run
Terry Ligocki 1,019,286 993,556 2.52% 66.8 0.11 4.24 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 8 H 2 tH 1 n 6 run
Terry Ligocki 993,556 985,718 0.79% 78.3 0.03 3.53 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 1 n 8 run
Terry Ligocki 985,718 981,095 0.47% 83.7 0.02 3.27 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 6 H 1 tH 0 n 9 run
Terry Ligocki 981,095 975,912 0.53% 79.4 0.02 3.43 MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 1 n 8 run
Terry Ligocki 975,912 974,180 0.18% 84.6 0.01 3.20 MitM_CTL RWL_mod sim 1001 maxT 100000 H 16 mod 4 n 8 run
Terry Ligocki 974,180 971,254 0.30% 96.9 0.01 2.79 MitM_CTL RWL_mod sim 1001 maxT 100000 H 12 mod 1 n 12 run
Terry Ligocki 971,254 970,101 0.12% 105.6 0.00 2.56 MitM_CTL CPS_LRU sim 1001 maxT 100000 LRUH 12 H 0 tH 0 n 18 run

Stage 3

Starting from the results of Stage 2, Andrew Ducharme ran "lr_enum_continue" with the maximum number of steps set to 100 million, then "Enumerate.py" with various parameters. A total of 6 Enumerate variations were run. The holdouts were reduced from ~970K TMs to ~870K TMs (a 10.31% reduction). The details are given in this table, including links to the Google Drive with the holdouts and details of the computation:

(done to reduce column size: *1= % Reduced, *2= Compute Time (core-hours), *3= Decided, *4= Processed)

Done by Holdout TMs *1 *2 TMs/sec/core Description Data
Input Output *3 *4
Andrew Ducharme 970,101 939,447 3.16% -- -- -- lr_enum_continue 100_000_000 steps Google Drive
Andrew Ducharme 895,813 889,838 0.67% 609.3 0.00 0.41 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=8 --no-ctl --lin-steps=0 --time=4 --force --save-freq=1000
Andrew Ducharme 889,838 880,278 1.07% 1,638.9 0.00 0.15 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=12 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 880,278 877,485 0.32% 1,885.5 0.00 0.13 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=6 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 877,485 875,062 0.28% 2,068.8 0.00 0.12 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=5 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 875,062 873,469 0.18% 1,785.4 0.00 0.14 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=7 --no-ctl --lin-steps=0 --force --save-freq=1000
Andrew Ducharme 873,469 870,085 0.39% 9,270.0 0.00 0.03 Enumerate.py --no-steps --exp-linear-rules --max_loops=1_000_000 --block-mult=2 --tape-limit=500 --time=120 --no-ctl --lin-steps=0 --force --save-freq=1000

The total time spent on the lr_enum_continue computation was not recorded.

References

  1. Shawn Ligocki. 2022. "Extending Up-arrow Notation"