1RB0LF_1RC1RA_1LD0RE_1LB1LD_---1RC_1RC1LA

From BusyBeaverWiki
Revision as of 23:07, 31 August 2024 by Sligocki (talk | contribs) (Created page with "{{machine|1RB0LF_1RC1RA_1LD0RE_1LB1LD_---1RC_1RC1LA}} {{TM|1RB0LF_1RC1RA_1LD0RE_1LB1LD_---1RC_1RC1LA}} Analysis by Shawn Ligocki: A(a, b, c) = 0^inf 10^a <A 10^b 11^c 0^inf A(a+1, b, c+1) -> A(a, b+2, c) A(0, b, c+1) -> A(0, b+3, c) A(0, b, 0) -> A(b+1, 1, 1) A(a+2, b, 0) -> A(a, 1, b+2) A(1, b, 0) -> Halt(b+3) Start: A(0, 0, 0) Analysis by @rae: (a,b,0) -> (a-b-4,2b+5,0) if a>b+4 (a,b,0) -> (3b-a+9,3,0) if 2<=a<=b+4 (1,b,0) -> halt * 3 -> 32-2-3...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

1RB0LF_1RC1RA_1LD0RE_1LB1LD_---1RC_1RC1LA (bbch)

Analysis by Shawn Ligocki:

A(a, b, c) = 0^inf 10^a <A 10^b 11^c 0^inf

A(a+1, b, c+1) -> A(a, b+2, c)

A(0, b, c+1) -> A(0, b+3, c)
A(0, b, 0)   -> A(b+1, 1, 1)

A(a+2, b, 0) -> A(a, 1, b+2)
A(1, b, 0) -> Halt(b+3)

Start: A(0, 0, 0)

Analysis by @rae:

(a,b,0) -> (a-b-4,2b+5,0) if a>b+4
(a,b,0) -> (3b-a+9,3,0) if 2<=a<=b+4
(1,b,0) -> halt
  • 3 -> 32-2-3-12 = 15 -> 64-3-15-12 = 34
  • for n>=5, if 2^n < a < 2^(n+1)-n-11, then a -> a' = 2^(n+2)-n-a-11, where 2^(n+1) = 2^(n+2)-n-(2^(n+1)-n-11)-11 < a' < 2^(n+2)-n-2^n-10 < 2^(n+2)-(n+1)-11
  • since 2^5 < 34 < 2^6-5-11, the TM never terminates by induction