1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC
A probviously halting BB(6) Cryptid found by @mxdys on 30 Jun 2024.
Analysis by Shawn Ligocki:
1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC C(a, b, c) = $ 1^2a+1 C> 0^2b 1^c 01 $ Level 1: C(a, b+2, c) -> C(a+3, b, c) C(a, 1, c+2) -> C(1, a+3, c) C(a, 0, c+1) -> C(1, a+1, c) C(a, 0, 0) -> C(1, 2, 2a+3) C(a, 1, 1) -> C(1, 2, 2a+7) C(a, 1, 0) -> Halt(2a+5) Level 2: C(1, 2b, c+1) -> C(1, 3b+2, c) C(1, 2b+1, c+2) -> C(1, 3b+4, c) C(1, 2b, 0) -> C(1, 2, 6b+5) C(1, 2b+1, 1) -> C(1, 2, 6b+9) C(1, 2b+1, 0) -> Halt(6b+7) C(1, 0, 0) @11 C(1, 2, 5) @55 ... C(1, 17, 1) C(1, 2, 57) ... C(1, 70_091_065, 1) C(1, 2, 210_273_201) ...
Rules validated in https://github.com/sligocki/busy-beaver/blob/main/rust/src/validator.rs#L1042
For my code I'm seeing O(n^2) runtime:
0 C(1, 2, 5) [0s] 4 C(1, 2, 57) [0s] 45 C(1, 2, 210_273_201) [0s] 100_000 C(1, 10^17_602, 210_123_530) [1s] 200_000 C(1, 10^35_211, 209_973_408) [4s] 300_000 C(1, 10^52_820, 209_823_652) [10s] 400_000 C(1, 10^70_429, 209_673_652) [17s] 500_000 C(1, 10^88_039, 209_523_616) [27s] 600_000 C(1, 10^105_648, 209_373_548) [38s] 700_000 C(1, 10^123_257, 209_223_420) [52s] 800_000 C(1, 10^140_866, 209_073_477) [68s] 900_000 C(1, 10^158_475, 208_923_310) [86s] 1_000_000 C(1, 10^176_084, 208_773_236) [107s]
ETA maybe 22 days for next "reset" (c <= 1).
Interestingly, both of the 2 reset's I've been able to simulate to both follow the C(1, 2b+1, 1) -> C(1, 2, 6b+9) path.
Equivalent TMs
This is equivalent to 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC
(bbch) except slightly slower. Specifically: Specifically, 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC
has 1 <E --(1)--> <D 1
, while 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC
has x1 <E --(3)--> x <D 1