1RB1RF 0LC1RC 1RD1LC 1RZ0RE 1RA1LF 1RA0LE
1RB1RF_0LC1RC_1RD1LC_---0RE_1RA1LF_1RA0LE (bbch) is a BB(6) TM.
Analysis by Shawn Ligocki
https://discord.com/channels/960643023006490684/1239205785913790465/1430590536825442384
1RB1RF_0LC1RC_1RD1LC_---0RE_1RA1LF_1RA0LE A> 10 -> 11 A> 0 1^n A> 00 -> 11 A> 1^n 0 for n >= 1 0 1^2k+3 A> 11 -> 1^4 0 1^2k+1 A> 0 1 A> 1^2 0 -> 1^5 Z> (Halt) 0 1 A> 1^3 0 -> 1^4 0 1 A> 0 1 A> 1^4 -> 1^5 A> 1 0 1^2k A> 11 -> 1^2k+3 A> A(a,b,c) = 0^inf 1^a 0 1^b A> 1^c 0^inf A(a,b,1) -> A(a,b+2,0) A(a,b,0) -> A(0,a+2,b) A(a,2k+3,c+2) -> A(a+4,2k+1,c) A(a,1,2) -> Halt(a+5) A(a,1,3) -> A(a+4,1,0) A(a,1,c+4) -> A(0,a+5,c+1) A(a,2k,c+2) -> A(0,a+2k+3,c) if b >= c: A(0, 2n+1, 2m) -> A(0, 4m+5, 2(n-m)-1) if n >= m + 1 A(0, 2n+1, 2m+1) -> A(0, 4m+5, 2(n-m)+1) if n >= m A(0, 2n+1, 2n) -> A(0, 5, 4n+2) if b < c: A(0, 2n+1, c) -> A(0, 4n+5, c-2n-3) if c >= 2n + 4 A(0, 2n+1, 2n+3) -> A(0, 5, 4n+6) A(0, 2n+1, 2n+2) -> Halt(4n+5)