1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD
1RB1RD1LC_2LB1RB1LC_1RZ1LA1LD_2RB2RA2RD
(bbch) is a tetrational halting BB(4,3) TM. It was discovered in May 2024 by Pavel Kropitz as one of seven long running TMs and achieves a score of around 10 ↑↑ 9.873987. Polygon analysed the TM by hand in September 2025, providing its score.
Pavel listed the halting tape as:
1 Z> 1^((8*<7; (6*2^((4b + 14)) - 4); (6*2^((48*2^(21) - 2)) - 4)> + 33)) 2
Analysis by Polygon
S is any tape configuration 1. S D> 2^a S --> S 2^a D> S [+a steps] 2. S B> 1^a S --> S 1^a B> S [+a steps] 3. S 1 B> 0 S --> S <A 1^2 S [+4 steps] 4. S D> (11)^a S --> S (21)^a D> S [+2a steps] S A> (11)^a S --> S (12)^a A> S [+2a steps] 5. S (21)^a <C S --> S <C (11)^a S [+2a steps] S (12)^a <A S --> S <A (11)^a S [+2a steps] 6. S (12)^a A> 0^2 S --> S <A (11)^a+1 S [+2a +5 steps] 7. S (12)^a 2 (12)^b A> 0^2 S --> S (12)^a-1 2 (12)^b+2 A> S [+4b +7 steps] 8. S (12)^a 2 (12)^b A> 0^inf --> S 2 (12)^b+2a A> 0^inf [+4a^2 +8a +4ba steps] 9. S (12)^a <D (11)^b 0^inf --> S (12)^a-1 <D (11)^2b+3 0^inf [+4b^2 +22b +22 steps] 10. S (12)^a <D (11)^b 0^inf --> S <D (11)^((2^(a))*b+(2^(a))*3-3) 0^inf 11. S (11)^a <D (11)^b 0^inf --> S (11)^a-2 (12)^b+3 <D (11)^3 0^inf [+10b +50 steps] 12. S 1^a <A (11)^b 0^inf --> 1^a-1 <A (11)^b+1 2 0^inf [+4b +5 steps]
Let A(a,b,c) = S (11)^a (12)^b <D (11)^c 0^inf
- Rule 9: A(a, b, c) --> A(a, b - 1, 2c + 3)
- Rule 10: A(a, b, c) --> which becomes if c = 3.
- Rule 11: A(a, 0, c) --> A(a - 2, c + 3, 3)
Further: let
- If c = 3: A(a, b, 3) --> A(a, 0, f(b) - 3) --> A(a - 2, f(b), 3)
- A(a, 0, c) -->
- A(2k + d, b, 3) -->
Trajectory:
The TM enters configuration A(19, 2, 3) with S = 2 1 after 799 steps.
A(19, 2, 3) -->
Let m =
--> 0^inf 2 1 (11)^1 <D (11)^m 0^inf
Final trajectory: 0^inf 2 1 (11)^1 <D (11)^m 0^inf --> 0^inf 2 1 1 2 A> (11)^m 0^inf --> 0^inf 2 1 (12)^m+1 A> 0^inf --> 0^inf 2 1 <A (11)^m+2 0^inf --> 0^inf 2 1 D> (11)^m+2 0^inf --> 0^inf (21)^m+3 D> 0^inf --> 0^inf (21)^m+3 2 B> 0^inf --> 0^inf (21)^m+3 2 <B 2 0^inf --> 0^inf (21)^m+3 <C (12)^1 0^inf --> 0^inf <C (11)^m+3 (12)^1 0^inf --> 0^inf 1 Z> (11)^m+3 (12)^1 0^inf Score = 2m + 9
Score calculated in HyperCalc:
(10^)^8 30,302,671.815163
Or in tetration: 10^^9.873987 (truncated)