1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE
1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE
(bbch)
Current BB(6) champion. Discovered by mxdys on 25 June 2025.
It's in a family of 4 machines with the halting time and sigma score between 2↑↑2↑↑2↑↑10 and 2↑↑2↑↑2↑↑11:
1RB1RA_1RC---_1LD0RF_1RA0LE_0LD1RC_1RA0RE (hereafter referred to as TM1) 1RB---_1LC0RF_1RE0LD_0LC1RB_1RA1RE_1RE0RD (TM2) 1RB0LE_1RC1RB_1RD---_1LA0RF_0LA1RD_1RB0RE (TM3) 1RB0RF_1RC1RB_1RD---_1LE0RA_1RB0LF_0LE1RD (TM4)
Analysis by mxdys
Inc2: S1(len0,a0+1,2,a ,b ) --> S1(len0,a0 ,1,a+b+2,2^b-1) Inc1: S1(len0,a0+1,1,a ,b ) --> S1(len0,a0 ,0,a+b+2,2^b-1) Inc0: S1(len0,a0+1,0,a ,b ) --> S1(len0,a0 ,2,a+b+1,2^b-1) Rst0: S1(a0,0,0,a,b) --> halt Rst1: S1(a0,0,1,a,b) --> S1(a0+a+2,(2^(a0+2)-1)*2^a-1,2,b,2^b-1) start: S1(3,7,2,6,63) the rules are used in the following order: Inc2,Inc1,Inc0, Inc2,Inc1,Inc0, Inc2, Rst1, Inc2,Inc1,Inc0, ..., Inc2,Inc1,Inc0, Inc2, Rst1, Inc2,Inc1,Inc0, ..., Inc2,Inc1,Inc0, Inc2,Inc1, Rst0. where S1(len0,a0,m,a,b) = 0^inf LH LC(len0,a0) d0 10 1^m LC(a,0) <X 0 11100 111^(1+b) 0^inf d0 = 100 d1 = 111 LC(0,0) = "" LC(n+1,2x) = LC(n,x) d1 LC(n+1,2x+1) = LC(n,x) d0 for TM2, X=D, LH=111011 for TM3, X=E, LH=11 TM1 is equivalent to TM2 after several steps TM4 is equivalent to TM3 after several steps TM1 has the highest halting time among this family TM1,TM2 have the highest sigma score among this family
estimation of time/score:
Inc2,Inc1,Inc0, ..., Inc2,Inc1,Inc0, Inc2 n mod 3 = 1: S1(len0,n,2,b,2^b-1) --> S1(len0,0,1,st2(n,b)+floor(n/3)*5+2,t2(n+1,b)) Inc2,Inc1,Inc0, ..., Inc2,Inc1,Inc0, Inc2,Inc1, Rst0 n mod 3 = 2: S1(len0,n,2,b,2^b-1) --> S1(len0,0,0,st2(n,b)+floor(n/3)*5+4,t2(n+1,b)) --> halt Rst1: S1(len0,0,1,a,b) --> S1(len0+a+2,2^(len0+a+2)-2^a-1,2,b,2^b-1) where t2(0,b) = b, t2(a+1,b) = 2^t2(a,b)-1 st2(a,b) = t2(0,b) + t2(1,b) + ... + t2(a,b) S1(3,7,2,6,63) --> S1(3,0,1,st2(7,6)+12,t2(8,6)) --> S1(≈t2(7,6),≈t2(8,6),2,_,_) --> S1(≈t2(7,6),0,1,≈2^^t2(8,6),_) --> S1(≈2^^t2(8,6),≈2^^t2(8,6),2,_,_) --> S1(≈2^^t2(8,6),0,1,≈2^^2^^t2(8,6),≈2^^2^^t2(8,6)) --> halt with time/score ≈2^^2^^((2^)^8 6) 2^^^5 < 2^^2^^2^^10 < 2^^2^^((2^)^8 6) < 2^^2^^2^^11 < 2^^^6