1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC

From BusyBeaverWiki
Revision as of 02:40, 9 May 2025 by Sligocki (talk | contribs) (Created page with "{{machine|1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC}} {{TM|1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC}} is a halting tetrational BB(7) TM that runs for over 10↑↑35 steps found by Shawn Ligocki on 8 May 2025 based on @mxdys's enumeration system https://github.com/ccz181078/TM Analysis by Shawn Ligocki: <pre> 1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC B(a,b,c,d) = 0^inf 1^a B> 1^b 01^c 011^d 0^inf D(a) = B(a,0,0,0) = 0^inf 1^a B> 0^inf D(3k) -...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC (bbch) is a halting tetrational BB(7) TM that runs for over 10↑↑35 steps found by Shawn Ligocki on 8 May 2025 based on @mxdys's enumeration system https://github.com/ccz181078/TM

Analysis by Shawn Ligocki:

1RB1RA_1RC0LC_0LD1LG_1LF0LE_1RZ1LF_0LA1LD_1RA1LC

B(a,b,c,d) = 0^inf 1^a B> 1^b 01^c 011^d 0^inf
D(a) = B(a,0,0,0) = 0^inf 1^a B> 0^inf

D(3k) -> Halt(2k+1)

D(9k+1)  -->  D(32 2^k - 27)
D(9k+4)  -->  D(32 2^k - 23)
D(9k+7)  -->  D(32 2^k - 18)

D(9k+2)  -->  D(34 2^k - 27)
D(9k+5)  -->  D(34 2^k - 23)
D(9k+8)  -->  D(34 2^k - 18)

Start: D(5)

Basic transitions used to build this:

0 1^2n+1 B> 1   -->  1^2n+3 B>
0 1^2n+1 B> 0 1^m 0  -->  1^2n+m+4 B>   for m >= 1

0^4 1^2n B> 1  -->  1 B> 010 1^2n 0
0^5 1^2n B> 1  -->  1^5 B> 1^2n 0

0   1^3k   B> 00  -->  1 Z> 011^k 00
0^2 1^3k+1 B> 00  -->  1 B> 01   011^k 00
0^3 1^3k+2 B> 00  -->  1 B> 0111 011^k 00

$ 1^a B> 011^3  -->  $ 1^2a+23 B>  (for a odd)