1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC
This is one of a collection of 16 probviously halting tetrational BB(6) Cryptids found by @mxdys and shared on Discord on 26 Jul 2024. They all have (almost) identical tape behavior and if they halt, they will all have the same sigma scores. However, they will have different step counts.
List of Cryptids
1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC 1RB1RA_0RC1RC_1RD0LF_0LE1LE_1RA1LD_---0LC 1RB0RD_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC 1RB0RD_0RC1RC_1RD0LF_0LE1LE_1RA1LD_---0LC 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC 1RB0RD_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC 1RB1RA_0RC1RF_1LD---_0LE1LE_1RA1LD_1LD0LF 1RB1RA_0RC1RF_1LD---_0LE1LE_1RA1LD_1RD0LF 1RB1RA_0RC1RF_1RD---_0LE1LE_1RA1LD_1LD0LF 1RB1RA_0RC1RF_1RD---_0LE1LE_1RA1LD_1RD0LF 1RB0RD_0RC1RF_1LD---_0LE1LE_1RA1LD_1LD0LF 1RB0RD_0RC1RF_1LD---_0LE1LE_1RA1LD_1RD0LF 1RB0RD_0RC1RF_1RD---_0LE1LE_1RA1LD_1LD0LF 1RB0RD_0RC1RF_1RD---_0LE1LE_1RA1LD_1RD0LF 1RB1RA_0RC1RF_1LD---_0LE1LE_1RA0LB_1LD0LF 1RB0RD_0RC1RF_1LD---_0LE1LE_1RA0LB_1LD0LF
Analysis by @mxdys
https://discord.com/channels/960643023006490684/1239205785913790465/1266406840103866399
1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC N(n,m) := 0^inf 1^5 A> 0^(2n+1) 1^m 01 0^inf start from N(4,4) N(2n,m+2) --> N(3n+3,m) N(2n+1,m+1) --> N(3n+4,m) N(2n+4,0) --> halt N(2n+4,1) --> N(4,6n+20) N(2n+5,0) --> N(4,6n+22) example: (4,4),(9,2),(16,1),(4,56),(9,54),(16,53),(27,51),(43,50),(67,49),(103,48),(157,47),(238,46),(360,44),...
Analysis by Shawn Ligocki
https://discord.com/channels/960643023006490684/1239205785913790465/1267700760892674200
1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC C(a, b, c) = $ 1^2a+1 C> 0^2b 1^c 01 $ Level 1: C(a, b+2, c) -> C(a+3, b, c) C(a, 1, c+2) -> C(1, a+3, c) C(a, 0, c+1) -> C(1, a+1, c) C(a, 0, 0) -> C(1, 2, 2a+3) C(a, 1, 1) -> C(1, 2, 2a+7) C(a, 1, 0) -> Halt(2a+5) Level 2: C(1, 2b, c+1) -> C(1, 3b+2, c) C(1, 2b+1, c+2) -> C(1, 3b+4, c) C(1, 2b, 0) -> C(1, 2, 6b+5) C(1, 2b+1, 1) -> C(1, 2, 6b+9) C(1, 2b+1, 0) -> Halt(6b+7) C(1, 0, 0) @11 C(1, 2, 5) @55 ... C(1, 17, 1) C(1, 2, 57) ... C(1, 70_091_065, 1) C(1, 2, 210_273_201) ...
Rules validated in https://github.com/sligocki/busy-beaver/blob/main/rust/src/validator.rs#L1042
Example growth:
0 C(1, 2, 5) [0s] 4 C(1, 2, 57) [0s] 45 C(1, 2, 210_273_201) [0s] 100_000 C(1, 10^17_602, 210_123_530) [1s] 200_000 C(1, 10^35_211, 209_973_408) [4s] 300_000 C(1, 10^52_820, 209_823_652) [10s] 400_000 C(1, 10^70_429, 209_673_652) [17s] 500_000 C(1, 10^88_039, 209_523_616) [27s] 600_000 C(1, 10^105_648, 209_373_548) [38s] 700_000 C(1, 10^123_257, 209_223_420) [52s] 800_000 C(1, 10^140_866, 209_073_477) [68s] 900_000 C(1, 10^158_475, 208_923_310) [86s] 1_000_000 C(1, 10^176_084, 208_773_236) [107s]
Interestingly, both of the 2 reset's I've been able to simulate to both follow the C(1, 2b+1, 1) -> C(1, 2, 6b+9) path.
Equivalent TMs
These 6 TMs all have the exact identical tape behavior:
1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC 1RA 1LD 1LD 1RB1RA_0RC1RC_1RD0LF_0LE1LE_1RA1LD_---0LC 1RA 1RD 1LD 1RB0RD_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC 0RD 1LD 1LD 1RB0RD_0RC1RC_1RD0LF_0LE1LE_1RA1LD_---0LC 0RD 1RD 1LD 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC 1RA 1LD 0LB 1RB0RD_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC 0RD 1LD 0LB
The one mxdys first shared: 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC
is the most efficient and all the rest add extra steps during certain transitions. IIUC, the others would all have been pruned using Marxen's pruning algorithm. Specifically, these are all the options by changing:
A2 -> {1RA,0RD} C0 -> {1LD,1RD} E1 -> {1LD,0LB}
Except that you cannot have both C0->1RD
and E1->0LB
They are all equivalent b/c:
1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC vs. 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC {E1->0LB, Bx->xRC, C0->1LD} == E1->1LD vs. 1RB1RA_0RC1RC_1RD0LF_0LE1LE_1RA1LD_---0LC {C0->1RD, Dx->xLE, E1->1LD} == C0->1LD vs. 1RB0RD_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC {A1->0RD, Dx->xLE, E0->1RA} == A1->1RA
I believe that this means that either
1RB0RD_0RC1RC_1RD0LF_0LE1LE_1RA1LD_---0LC 0RD 1RD 1LD 1RB0RD_0RC1RC_1LD0LF_0LE1LE_1RA0LB_---0LC 0RD 1LD 0LB
will be the longest running depending on whether there are more E1 or C0 transitions in 1RB1RA_0RC1RC_1LD0LF_0LE1LE_1RA1LD_---0LC
's complete transition history.