5-state busy beaver winner

From BusyBeaverWiki
Revision as of 02:06, 26 February 2025 by MrSolis (talk | contribs)
Jump to navigation Jump to search

The 5-state busy beaver winner is the Turing machine whose step count determines BB(5). Up to permutations, that machine is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch), which halts after 47176870 steps with 4098 ones on the tape.

Description

The transition table of this Turing machine.

This machine essentially creates an integer variable starting at 0 and repeatedly applies a linear function to it whose leading coefficient is , ending when the variable is found to be congruent to 2 modulo 3.

Attributions

This machine and its step count were first reported on by Heiner Marxen and Jürgen Buntrock in February 1990[1]. The high-level rules were first demonstrated by Michael Buro in November 1990[2].

Analysis

Let . Then[3],

Proof

Consider the configuration . After one step this configuration becomes . We note the following shift rule:

Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:

  1. If , then in steps we arrive at , which is the same configuration as .
  2. If , then in steps we arrive at , which in five steps becomes , equal to .
  3. If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .

Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:

Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).


The information above can be summarized as[4]

Substituting , , and to each of these cases respectively gives us our final result.

Trajectory

The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:

An animation of becoming in 365 steps (click to view).

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados oder Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's - or - How to catch busy beavers?]. Schriften zur Informatik und angewandten Mathematik (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf
  3. Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a
  4. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf