Unsolved problem:
Does Antihydra run forever?
1RB1RA_0LC1LE_1LD1LC_1LA0LB_1LF1RE_---0RA
(bbch )
Artistic depiction of Antihydra by Jadeix
ANTIHYDRA PAGE REVAMP (WIP)
Antihydra is a BB(6) Cryptid . It is similar to Hydra in that it halts if and only if the sequence
H
n
+
1
=
⌊
3
2
H
n
⌋
,
H
0
=
8
,
{\displaystyle H_{n+1}={\bigg \lfloor }{\frac {3}{2}}H_{n}{\bigg \rfloor },H_{0}=8,}
ever has more than twice the number of odd terms as the amount of even terms.
Analysis
Rules
Let
A
(
a
,
b
)
:=
0
∞
1
a
0
1
b
E>
0
∞
{\displaystyle A(a,b):=0^{\infty }\;1^{a}\;0\;1^{b}\;{\textrm {E>}}\;0^{\infty }}
. Then[1] ,
A
(
a
,
2
b
)
→
2
a
+
3
b
2
+
12
b
+
11
A
(
a
+
2
,
3
b
+
2
)
,
A
(
0
,
2
b
+
1
)
→
3
b
2
+
9
b
−
1
0
∞
<F
110
1
3
b
0
∞
,
A
(
a
+
1
,
2
b
+
1
)
→
3
b
2
+
12
b
+
5
A
(
a
,
3
b
+
3
)
.
{\displaystyle {\begin{array}{|lll|}\hline A(a,2b)&\xrightarrow {2a+3b^{2}+12b+11} &A(a+2,3b+2),\\A(0,2b+1)&\xrightarrow {3b^{2}+9b-1} &0^{\infty }\;{\textrm {<F}}\;110\;1^{3b}\;0^{\infty },\\A(a+1,2b+1)&\xrightarrow {3b^{2}+12b+5} &A(a,3b+3).\\\hline \end{array}}}
Proof
Consider the partial configuration
P
(
m
,
n
)
:=
0
1
m
E>
0
1
n
0
∞
{\displaystyle P(m,n):=0\;1^{m}\;{\textrm {E>}}\;0\;1^{n}\;0^{\infty }}
. The configuration after two steps is
0
1
m
−
1
0
A>
1
n
+
1
0
∞
{\displaystyle 0\;1^{m-1}\;0\;{\textrm {A>}}\;1^{n+1}\;0^{\infty }}
. We note the following shift rule:
A>
1
s
→
s
1
s
A>
{\displaystyle {\begin{array}{|c|}\hline {\textrm {A>}}\;1^{s}\xrightarrow {s} 1^{s}\;{\textrm {A>}}\\\hline \end{array}}}
As a result, we get
0
1
m
−
1
0
1
n
+
1
A>
0
∞
{\displaystyle 0\;1^{m-1}\;0\;1^{n+1}\;{\textrm {A>}}\;0^{\infty }}
after
n
+
1
{\displaystyle n+1}
steps. Advancing two steps produces
0
1
m
−
1
0
1
n
+
2
<C
0
∞
{\displaystyle 0\;1^{m-1}\;0\;1^{n+2}\;{\textrm {<C}}\;0^{\infty }}
. A second shift rule is useful here:
1
s
<C
→
s
<C
1
s
{\displaystyle {\begin{array}{|c|}\hline 1^{s}\;{\textrm {<C}}\xrightarrow {s} {\textrm {<C}}\;1^{s}\\\hline \end{array}}}
This allows us to reach
0
1
m
−
1
0
<C
1
n
+
2
0
∞
{\displaystyle 0\;1^{m-1}\;0\;{\textrm {<C}}\;1^{n+2}\;0^{\infty }}
in
n
+
2
{\displaystyle n+2}
steps. Moving five more steps gets us to
0
1
m
−
2
E>
0
1
n
+
3
0
∞
{\displaystyle 0\;1^{m-2}\;{\textrm {E>}}\;0\;1^{n+3}\;0^{\infty }}
, which is the same configuration as
P
(
m
−
2
,
n
+
3
)
{\displaystyle P(m-2,n+3)}
. Accounting for the head movement creates the condition that
m
≥
4
{\displaystyle m\geq 4}
. In summary:
P
(
m
,
n
)
→
2
n
+
12
P
(
m
−
2
,
n
+
3
)
if
m
≥
4.
{\displaystyle {\begin{array}{|c|}\hline P(m,n)\xrightarrow {2n+12} P(m-2,n+3){\text{ if }}m\geq 4.\\\hline \end{array}}}
With
A
(
a
,
b
)
{\displaystyle A(a,b)}
we have
P
(
b
,
0
)
{\displaystyle P(b,0)}
. As a result, we can apply this rule
⌊
1
2
b
⌋
−
1
{\textstyle {\big \lfloor }{\frac {1}{2}}b{\big \rfloor }-1}
times (assuming
b
≥
4
{\displaystyle b\geq 4}
), which creates two possible scenarios:
If
b
≡
0
(
mod
2
)
{\displaystyle b\equiv 0\ (\operatorname {mod} 2)}
, then in
∑
i
=
0
(
b
/
2
)
−
2
(
2
×
3
i
+
12
)
=
3
4
b
2
+
3
2
b
−
6
{\displaystyle \sum _{i=0}^{(b/2)-2}(2\times 3i+12)=\textstyle {\frac {3}{4}}b^{2}+{\frac {3}{2}}b-6}
steps we arrive at
P
(
2
,
3
2
b
−
3
)
{\textstyle P{\Big (}2,{\frac {3}{2}}b-3{\Big )}}
. The matching complete configuration is
0
∞
1
a
011
E>
0
1
(
3
b
)
/
2
−
3
0
∞
{\displaystyle 0^{\infty }\;1^{a}\;011\;{\textrm {E>}}\;0\;1^{(3b)/2-3}\;0^{\infty }}
. After
3
b
+
4
{\displaystyle 3b+4}
steps this becomes
0
∞
1
a
<C
00
1
(
3
b
)
/
2
0
∞
{\displaystyle 0^{\infty }\;1^{a}\;{\textrm {<C}}\;00\;1^{(3b)/2}\;0^{\infty }}
, which then leads to
0
∞
<C
1
a
00
1
(
3
b
)
/
2
0
∞
{\displaystyle 0^{\infty }\;{\textrm {<C}}\;1^{a}\;00\;1^{(3b)/2}\;0^{\infty }}
in
a
{\displaystyle a}
steps. After five more steps, we reach
0
∞
1
E>
1
a
+
2
00
1
(
3
b
)
/
2
0
∞
{\displaystyle 0^{\infty }\;1\;{\textrm {E>}}\;1^{a+2}\;00\;1^{(3b)/2}\;0^{\infty }}
, from which another shift rule must be applied:
E>
1
s
→
s
1
s
E>
{\displaystyle {\begin{array}{|c|}\hline {\textrm {E>}}\;1^{s}\xrightarrow {s} 1^{s}\;{\textrm {E>}}\\\hline \end{array}}}
Doing so allows us to get the configuration
0
∞
1
a
+
3
E>
00
1
(
3
b
)
/
2
0
∞
{\displaystyle 0^{\infty }\;1^{a+3}\;{\textrm {E>}}\;00\;1^{(3b)/2}\;0^{\infty }}
in
a
+
2
{\displaystyle a+2}
steps. In six steps we have
0
∞
1
a
+
2
011
E>
1
(
3
b
)
/
2
0
∞
{\displaystyle 0^{\infty }\;1^{a+2}\;011\;{\textrm {E>}}\;1^{(3b)/2}\;0^{\infty }}
, so we use the shift rule again, ending at
0
∞
1
a
+
2
0
1
(
3
b
)
/
2
+
2
E>
0
∞
{\displaystyle 0^{\infty }\;1^{a+2}\;0\;1^{(3b)/2+2}\;{\textrm {E>}}\;0^{\infty }}
, equal to
A
(
a
+
2
,
3
2
b
+
2
)
{\textstyle A{\Big (}a+2,{\frac {3}{2}}b+2{\Big )}}
,
3
2
b
{\textstyle {\frac {3}{2}}b}
steps later. This gives a total of
2
a
+
3
4
b
2
+
6
b
+
11
{\textstyle 2a+{\frac {3}{4}}b^{2}+6b+11}
steps.
If
b
≡
1
(
mod
2
)
{\displaystyle b\equiv 1\ (\operatorname {mod} 2)}
, then in
3
4
b
2
−
27
4
{\textstyle {\frac {3}{4}}b^{2}-{\frac {27}{4}}}
steps we arrive at
P
(
3
,
3
b
−
9
2
)
{\textstyle P{\Big (}3,{\frac {3b-9}{2}}{\Big )}}
. The matching complete configuration is
0
∞
1
a
0111
E>
0
1
(
3
b
−
9
)
/
2
0
∞
{\displaystyle 0^{\infty }\;1^{a}\;0111\;{\textrm {E>}}\;0\;1^{(3b-9)/2}\;0^{\infty }}
. After
3
b
+
2
{\displaystyle 3b+2}
steps this becomes
0
∞
1
a
<F
110
1
(
3
b
−
3
)
/
2
0
∞
{\displaystyle 0^{\infty }\;1^{a}\;{\textrm {<F}}\;110\;1^{(3b-3)/2}\;0^{\infty }}
. If
a
=
0
{\displaystyle a=0}
then we have reached the undefined F0
transition with a total of
3
4
b
2
+
3
b
−
19
4
{\textstyle {\frac {3}{4}}b^{2}+3b-{\frac {19}{4}}}
steps. Otherwise, continuing for six steps gives us
0
∞
1
a
−
1
0111
E>
1
(
3
b
−
3
)
/
2
0
∞
{\displaystyle 0^{\infty }\;1^{a-1}\;0111\;{\textrm {E>}}\;1^{(3b-3)/2}\;0^{\infty }}
. We conclude with the configuration
0
∞
1
a
−
1
0
1
(
3
b
+
3
)
/
2
E>
0
∞
{\displaystyle 0^{\infty }\;1^{a-1}\;0\;1^{(3b+3)/2}\;{\textrm {E>}}\;0^{\infty }}
, equal to
A
(
a
−
1
,
3
b
+
3
2
)
{\textstyle A{\Big (}a-1,{\frac {3b+3}{2}}{\Big )}}
, in
3
b
−
3
2
{\textstyle {\frac {3b-3}{2}}}
steps. This gives a total of
3
4
b
2
+
9
2
b
−
1
4
{\textstyle {\frac {3}{4}}b^{2}+{\frac {9}{2}}b-{\frac {1}{4}}}
steps.
The information above can be summarized as
A
(
a
,
b
)
→
{
A
(
a
+
2
,
3
2
b
+
2
)
if
b
≥
2
,
b
≡
0
(
mod
2
)
;
0
∞
<F
110
1
(
3
b
−
3
)
/
2
0
∞
if
b
≥
3
,
b
≡
1
(
mod
2
)
,
and
a
=
0
;
A
(
a
−
1
,
3
b
+
3
2
)
if
b
≥
3
,
b
≡
1
(
mod
2
)
,
and
a
>
0.
{\displaystyle A(a,b)\rightarrow {\begin{cases}A{\Big (}a+2,{\frac {3}{2}}b+2{\Big )}&{\text{if }}b\geq 2,b\equiv 0{\pmod {2}};\\0^{\infty }\;{\textrm {<F}}\;110\;1^{(3b-3)/2}\;0^{\infty }&{\text{if }}b\geq 3,b\equiv 1{\pmod {2}},{\text{ and }}a=0;\\A{\Big (}a-1,{\frac {3b+3}{2}}{\Big )}&{\text{if }}b\geq 3,b\equiv 1{\pmod {2}},{\text{ and }}a>0.\end{cases}}}
Substituting
b
←
2
b
{\displaystyle b\leftarrow 2b}
for the first case and
b
←
2
b
+
1
{\displaystyle b\leftarrow 2b+1}
for the other two yields the final result.
Trajectory
11 steps are required to enter the configuration
A
(
0
,
4
)
{\displaystyle A(0,4)}
before the Collatz-like rules are repeatedly applied. Here are the first few iterations:
A
(
0
,
4
)
→
47
A
(
2
,
8
)
→
111
A
(
4
,
14
)
→
250
A
(
6
,
23
)
→
500
A
(
5
,
36
)
→
1209
A
(
7
,
56
)
→
⋯
{\displaystyle {\begin{array}{|c|}\hline A(0,4)\xrightarrow {47} A(2,8)\xrightarrow {111} A(4,14)\xrightarrow {250} A(6,23)\xrightarrow {500} A(5,36)\xrightarrow {1209} A(7,56)\rightarrow \cdots \\\hline \end{array}}}
The halting problems for Antihydra and Hydra are connected by the
Hydra function , so the heuristic argument suggesting that machine is
probviously nonhalting can be applied here. After
2
31
{\displaystyle 2^{31}}
rule steps, we have
b
=
1073720884
{\displaystyle b=1073720884}
[1] , so this machine, if treated as a random process, has an extremely minuscule chance of ever halting.
References